
PPDT_r06
September 9, 1999

P1394.n
Draft Standard for a
High Performance Serial Bus
Peer-to-Peer Data Transfer Protocol (PPDT)

Sponsor

1394 Printer Working Group

Not yet Approved by

(an accredited standards organization)

Abstract:

Keywords:

PPDT_r06
September 9, 1999

iii

Contents
Page

1 Scope and purpose...1
1.1 Scope ...1
1.2 Purpose..1

2 Normative references ...3
2.1 Approved references..3
2.2 References under development ...3

3 Definitions and notation ..5
3.1 Definitions ..5

3.1.1 Conformance definitions..5
3.1.2 Technical definitions ..5
3.1.3 Abbreviations...8

3.2 Notation ..8
3.2.1 Numeric values..8
3.2.2 Bit, byte and quadlet ordering..8

4 Model (informative) ...11
4.1 Protocol stack and service model ..11
4.2 Independent data paths for each service ...12
4.3 Connection management ...13
4.4 Data transfer between initiator and target ..14
4.5 Control requests and responses ..14
4.6 Unsolicited status ...16

5 Data structures ...17
5.1 Transport flow ORBs..17
5.2 Status block..18
5.3 Control information...20
5.4 Queue information..23

6 Control operations...25
6.1 Login and queue zero...25
6.2 Autonomous response information ..26
6.3 Service discovery ...27
6.4 Connection management ...27

6.4.1 Connection establishment ...28
6.4.2 Queue shutdown ...29

6.5 Queue status information ...32

7 Transport flow operations ...33
7.1 Data transfer to a target ...34
7.2 Data transfer to an initiator...35
7.3 Completion status ..35
7.4 Execution context for active ORBs...36
7.5 Error recovery...36

8 Configuration ROM ...41
8.1 Root directory ...42
8.2 Instance directories ..43
8.3 Feature directories ...43
8.4 Keyword leaves ..44
8.5 Unit directories ...44

PPDT_r06
September 9, 1999

iv

8.6 Device ID..46

Tables

Table 1 – Parameter ID values ..22
Table 2 – Connection type encoded by queue ID parameters ...27
Table 3 – Root directory entries ...42
Table 4 – Feature directory entries ..43
Table 5 – Recommended keywords...44
Table 6 – Unit directory entries ..44

Figures

Figure 1 – Bit ordering within a byte...9
Figure 2 – Byte ordering within a quadlet...9
Figure 3 – Quadlet ordering within an octlet ..9
Figure 4 – Protocol stack (service at target) ..11
Figure 5 – Protocol stack (service at initiator)..11
Figure 6 – Multiplexed queues in an SBP-2 task set ...12
Figure 7 – Independent queues (logical model) ..13
Figure 8 – Control request originated by initiator ...15
Figure 9 – Control request originated by target ...16
Figure 10 – Transport flow ORB ..17
Figure 11 – Status block format ...19
Figure 12 – Control information format..20
Figure 13 – Immediate parameter format ..22
Figure 14 – Variable-length parameter format ...23
Figure 15 – Queue information format...23
Figure 16 – Queue information byte format ...24
Figure 17 – Transport flow (datagram model) ...33
Figure 18 – Transport flow (stream model)..33
Figure 19 – Transport flow (spanned datagram model)...34
Figure 20 – Excess initiator data (datagram model) ..34
Figure 21 – Excess target data (datagram model) ..35
Figure 22 – Example configuration ROM hierarchy...41
Figure 23 – First five quadlets of configuration ROM ..41
Figure E–1 – Example bus information block and root directory ...55
Figure E–2 – Feature directory with service ID and device ID leaves ...56
Figure E–3 – Unit directory for peer-to-peer data transport (PPDT) protocol target....................................57
Figure E–4 – Instance directory and keyword leaf for a scanner...58
Figure E–5 – Instance directory and keyword leaf for a multiple protocol printer ..59

Annexes

Annex A (normative) Minimum Serial Bus node capabilities ..47

Annex B (normative) Compliance with ANSI NCITS 325-1998 ..49

Annex C (normative) Control request and response parameters ...51

Annex D (normative) Control and status registers..53

Annex E (informative) Configuration ROM ...55

PPDT_r06
September 9, 1999

1

1 Scope and purpose

1.1 Scope

This is a full-use standard whose scope is the definition of a peer-to-peer data transport (PPDT) protocol
between Serial Bus devices that implement ANSI NCITS 325-1998, Serial Bus Protocol 2. The facilities
specified include, but are not limited to, the following:

– Device and service discovery. PPDT devices may use uniform discovery procedures to locate other
PPDT devices on the same bus. These procedures are extensible to an interconnected net of
buses, when specified by IEEE P1394.1, Draft Standard for Serial Bus to Serial Bus Bridges. Once
other PPDT devices are identified, facilities are provided to permit client applications to discover
services;

– Self-configurable (plug and play) binding of device drivers to PPDT devices in a dynamic
environment where users are free to insert and remove devices at will; and

– Connection management. A PPDT device (either an SBP-2 initiator or target) may establish and
manage uni- or bi-directional connections for data transfer with other PPDT devices. The
connections may be blocking or nonblocking, dependent upon application requirements, and operate
independently of each other.

Although the original impetus for the development of this standard came from participants knowledgeable
about printers and printing, the work evolved and became relevant to any application that utilizes a
client/server model and requires efficient, peer-to-peer transport of data between devices.

1.2 Purpose

Experience with SBP-2 has demonstrated its high efficiency for the confirmed transport of large quantities
of data between two devices. For historical reasons, SBP-2 is optimally tailored to an environment where
one device is the initiator (client) and the other the target (server); this is not necessarily the most natural
approach when client applications and their associated servers may be located within initiator, target or
both.

This standard creates a new layer of protocol services based upon SBP-2 but that provides building
blocks more suited to a peer-to-peer environment. Because SBP-2 is already widely implemented in
operating systems, this standard leverages that effort in order to enhance the value of Serial Bus to
devices in a wider range of operational circumstances. These include printers, facsimile devices, scanners
(or multifunction devices that present some combination of these functions) when a computer is present—
but it is also intended to address their peer-to-peer needs to communicate with each other in the absence
of a computer.

PPDT_r06
September 9, 1999

3

2 Normative references

The standards named in this section contain provisions which, through reference in this text, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision; parties to agreements based on this standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below.

Copies of the following documents can be obtained from ANSI:

Approved ANSI standards;

Approved and draft regional and international standards (ISO, IEC, CEN/CENELEC and ITUT); and

Approved and draft foreign standards (including BIS, JIS and DIN).

For further information, contact the ANSI Customer Service Department by telephone at (212) 642-4900,
by FAX at (212) 302-1286 or via the world wide web at http://www.ansi.org.

Additional contact information for document availability is provided below as needed.

2.1 Approved references

The following approved ANSI, international and regional standards (ISO, IEC, CEN/CENELEC and ITUT)
may be obtained from the international and regional organizations that control them.

ANSI NCITS 325-1998, American National Standard for Information Systems— Serial Bus Protocol 2
(SBP-2)

IEEE Std 1284-1994, Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for
Personal Computers

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 9899:1990, Programming Languages— C

2.2 References under development

At the time of publication, the following referenced standards were under development.

IEEE P1212r, Draft Standard for a Control and Status Register (CSR) Architecture for Microcomputer
Buses (Revision)

IEEE P1394a, Draft Standard for a High Performance Serial Bus (Supplement)

PPDT_r06
September 9, 1999

5

3 Definitions and notation

For the purposes of this standard, the following definitions, terms and notational conventions apply. IEEE
Std 100-1992, The New IEEE Standard Dictionary of Electrical and Electronics Terms, should be
consulted for terms not defined in this section.

3.1 Definitions

3.1.1 Conformance definitions

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design
models assumed by this standard. Other hardware and software design models may also be
implemented.

3.1.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not
checked by the recipient.

3.1.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4 reserved: A keyword used to describe objects— bits, bytes, quadlets, octlets and fields— or the
code values assigned to these objects in cases where either the object or the code value is set aside for
future standardization. Usage and interpretation may be specified by future extensions to this or other
standards. A reserved object shall be zeroed or, upon development of a future standard, set to a value
specified by such a standard. The recipient of a reserved object shall not check its value. The recipient of
an object defined by this standard as other than reserved shall check its value and reject reserved code
values.

3.1.1.5 shall: A keyword that indicates a mandatory requirement. Designers are required to implement all
such mandatory requirements to assure interoperability with other products conforming to this standard.

3.1.1.6 should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “is recommended.”

3.1.2 Technical definitions

The following terms are used in this standard:

3.1.2.1 active ORB: .

3.1.2.2 byte: Eight bits of data.

3.1.2.3 connection: A queue or a pair of queue(s) that affords access to a service. A connection may be
unidirectional or bi-directional; in the latter case, a connection may be blocking or nonblocking. Two
queues are necessary to implement a bi-directional, nonblocking connection.

3.1.2.4 control information: Information exchanged between initiator and target whose format is defined
by this standard. The format of control information is independent of the format of application data
exchanged by client applications and services— but both control information and application data are
transported by the same ORB methods.

3.1.2.5 control ORB: A transport flow whose queue field is zero; it is used to transfer request or response
control information between initiator and target.

PPDT_r06
September 9, 1999

6

3.1.2.6 final ORB: A transport flow ORB whose final and notify bits are both one. An initiator uses a final
ORB to indicate to a target that no subsequent ORBs with the same queue value will be signaled unless
the queue number is reissued by the target in a future CONNECT control request or response.

3.1.2.7 function: A capability of the device expressed as a unit architecture (unit directory) with a single
logical unit (LU zero).

3.1.2.8 initiator: A node that originates SBP-2 management requests, control operation and transport flow
ORBs and signals them to a target for processing.

3.1.2.9 logical unit: The part of the unit architecture that provides access to one or more services.
Devices compliant with this standard implement one logical unit with a LUN of zero.

3.1.2.10 login: The process by which an initiator obtains access to a target fetch agent. The target fetch
agent and its CSRs provide a mechanism for an initiator to signal ORBs to the target.

3.1.2.11 management service: A mandatory service provided for each function; it executes control
requests to establish or terminate connections to the other services of the function. The connection to this
service is implicitly established as the result of an SBP-2 login.

3.1.2.12 node: An addressable device attached to Serial Bus.

3.1.2.13 octlet: Eight bytes, or 64 bits, of data.

3.1.2.14 operation request block: A data structure fetched from system memory by a target in order to
execute the request encapsulated within it.

3.1.2.15 quadlet: Four bytes, or 32 bits, of data.

3.1.2.16 queue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set.

3.1.2.17 receive: When any form of this verb is used in the context of Serial Bus primary packets, it
indicates that the packet is made available to the transaction or application layers, i.e., layers above the
link layer. Neither a packet repeated by the PHY nor a packet examined by the link is "received" by the
node unless the preceding is also true.

3.1.2.18 register: A term used to describe quadlet-aligned addresses that may be read or written by Serial
Bus transactions. In the context of this standard, the use of the term register does not imply a specific
hardware implementation. For example, in the case of split transactions that permit sufficient time
between the request and response subactions, the behavior of the register may be emulated by a
processor.

3.1.2.19 request subaction: A packet transmitted by a node (the requester) that communicates a
transaction code and optional data to another node (the responder) or nodes.

3.1.2.20 response subaction: A packet transmitted by a node (the responder) that communicates a
response code and optional data to another node (the requester). A response subaction may consist of
either an acknowledge packet or a response packet.

3.1.2.21 service: A protocol used to control an independently operable component of a function.

3.1.2.22 split transaction: A transaction that consists of a request subaction followed by a separate
response subaction. Subactions are considered separate if ownership of the bus is relinquished between
the two.

PPDT_r06
September 9, 1999

7

3.1.2.23 status block: A data structure which may be written to system memory by a target when an
operation request block has been completed.

3.1.2.24 store: When any form of this verb is used in the context of data transferred by the target to the
system memory of either an initiator or other device, it indicates both the use of Serial Bus write request
subaction(s), quadlet or block, to place the data in system memory and the corresponding response
subaction(s) that complete the write(s).

3.1.2.25 system memory: The portions of any node’s memory that are directly addressable by a Serial
Bus address and which accepts, at a minimum, quadlet read and write access. Computers are the most
common example of nodes that might make system memory addressable from Serial Bus, but any node,
including those usually thought of as peripheral devices, may have system memory.

3.1.2.26 target: A node that fetches SBP-2 management requests, control operation and transport flow
ORBs from an initiator. In the case of control operation or transport flow requests, the ORBs are directed
to the target’s logical unit zero to be executed. A CSR Architecture unit is synonymous with a target.

3.1.2.27 task: A task is an organizing concept that represents the work to be done by a target to carry out
a command encapsulated by an ORB. In order to perform a task, a target maintains context information
for the task, which includes (but is not limited to) the command, parameters such as data transfer
addresses and lengths, completion status and ordering relationships to other tasks. A task has a lifetime,
which commences when the task is entered into the target’s task set, proceeds through a period of
execution by the target and finishes either when completion status is stored at the initiator or when
completion may be deduced from other information. While a task is active, it makes use of both target
resources and initiator resources.

3.1.2.28 task set: A group of tasks available for execution by a logical unit of a target. ANSI NCITS
325-1998 specifies some dependencies between individual tasks within the task set and this standard
mandates others.

3.1.2.29 transaction: A Serial Bus request subaction and the corresponding response subaction. The
request subaction transmits a transaction code (such as quadlet read, block write or lock); some request
subactions include data as well as transaction codes. The response subaction is null for transactions with
broadcast destination addresses or broadcast transaction codes; otherwise it returns completion status
and possibly data.

3.1.2.30 unit: A component of a Serial Bus node that provides processing, memory, I/O or some other
functionality. Once the node is initialized, the unit provides a CSR interface that is typically accessed by
device driver software at an initiator. A node may have multiple units, which normally operate
independently of each other. Within this standard, a unit is equivalent to a target.

3.1.2.31 unit architecture: The specification of the interface to and the services provided by a unit
implemented within a Serial Bus node. This standard extends the unit architecture defined by ANSI NCITS
325-1998 to include mechanisms for peer-to-peer data transport is a unit architecture for image devices
(e.g., printers, scanners or multifunction peripherals) intended to be used with the unit architecture for
SBP-2 targets.

3.1.2.32 unit attention: A state that a logical unit maintains while it has unsolicited status information to
report to one or more logged-in initiators. A unit attention condition shall be created as described
elsewhere in this standard or in the applicable command set- and device-dependent documents. A unit
attention condition shall persist for a logged-in initiator until a) unsolicited status that reports the unit
attention condition is successfully stored at the initiator or b) the initiator’s login becomes invalid or is
released. Logical units may queue unit attention conditions; after the first unit attention condition is
cleared, another unit attention condition may exist.

PPDT_r06
September 9, 1999

8

3.1.2.33 unsolicited status block: A status block whose src field is two; the meaning of the
ORB_offset_hi and ORB_offset_lo fields is unspecified and the status block does not pertain to any
particular ORB.

3.1.2.34 working set: The part of a task set that has been fetched from the initiator by the target and is
available to the target in its local storage.

3.1.3 Abbreviations

The following are abbreviations that are used in this standard:

CSR Control and status register

CRC Cyclical redundancy checksum

EUI-64 Extended Unique Identifier, 64-bits

LUN Logical unit number

ORB Operation request block

SDU Service data unit

SBP-2 ANSI NCITS 325-1998

3.2 Notation

The following conventions should be understood by the reader in order to comprehend this standard.

3.2.1 Numeric values

Decimal and hexadecimal numbers are used within this standard. By editorial convention, decimal
numbers are most frequently used to represent quantities or counts. Addresses are uniformly represented
by hexadecimal numbers, which are also used when the value represented has an underlying structure
that is more apparent in a hexadecimal format than in a decimal format.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names.
Hexadecimal numbers are represented by digits from the character set 0 – 9 and A – F followed by the
subscript 16. When the subscript is unnecessary to disambiguate the base of the number it may be
omitted. For the sake of legibility, hexadecimal numbers are separated into groups of four digits separated
by spaces.

As an example, 42 and 2A16 both represent the same numeric value.

3.2.2 Bit, byte and quadlet ordering

Devices compliant with this standard use the facilities of Serial Bus, IEEE Std 1394-1995; therefore this
standard uses the ordering conventions of Serial Bus in the representation of data structures. In order to
promote interoperability with memory buses that may have different ordering conventions, this standard
defines the order and significance of bits within bytes, bytes within quadlets and quadlets within octlets in
terms of their relative position and not their physically addressed position.

Within a byte, the most significant bit, msb, is that which is transmitted first and the least significant bit,
lsb, is that which is transmitted last on Serial Bus, as illustrated below. The significance of the interior bits
uniformly decreases in progression from msb to lsb.

PPDT_r06
September 9, 1999

9

Figure 1 – Bit ordering within a byte

Within a quadlet, the most significant byte is that which is transmitted first and the least significant byte is
that which is transmitted last on Serial Bus, as shown below.

Figure 2 – Byte ordering within a quadlet

Within an octlet, which is frequently used to contain 64-bit Serial Bus addresses, the most significant
quadlet is that which is transmitted first and the least significant quadlet is that which is transmitted last on
Serial Bus, as the figure below indicates.

Figure 3 – Quadlet ordering within an octlet

When block transfers take place that are not quadlet aligned or not an integral number of quadlets. No
assumptions can be made about the ordering (significance within a quadlet) of bytes at the unaligned
beginning or fractional quadlet end of such a block transfer, unless an application has knowledge (outside
of the scope of this standard) of the ordering conventions of the other bus.

lsbmsb
most significant least significant

interior bits (decreasing significance left to right)

next to
least significant byte

second
most significant byte

most significant least significant

most significant byte least significant byte

address + 0 address + 1 address + 2 address + 3

most significant quadlet

least significant quadlet

most significant

least significant

addr + 0

addr + 4

PPDT_r06
September 9, 1999

11

4 Model (informative)

This section is informative and describes devices that conform to this document and its normative
references. It is intended to enhance the usefulness of the other, normative parts of the document. In
addition to the information in this clause, users of this document should also be familiar with the CSR
architecture, Serial Bus standards and the ANSI NCITS 325-1998.

Examples of devices that come within the scope of this document include (but are not limited to) copiers,
printers, facsimile machines, scanners and multi-function peripherals that combine two or more of these
capabilities. These devices are characterized by high-volume transfers of application data; modest
amounts of control information may be communicated in parallel with the application data transfers. These
devices are used with diverse operating systems and application protocols; consequently any standard for
their use with Serial Bus needs to hide many of the transport protocol details from the user applications.
For example, a print driver that supports Postscript data formats should not be concerned with how data
and control information are transported between it and the printer. This document resolves those
concerns.

4.1 Protocol stack and service model

The relationship between the initiator and target may be modeled as a software stack present in both
devices, as shown by Figure 4 and Figure 5 below. The physical interconnection, via Serial Bus, exists at
the lowest protocol level. Logical connections (shown by dashed lines) exist at the other protocol levels: an
SBP-2 LOGIN between the initiator and target multiplexes queues (defined by this document) that in turn
support end-to-end connections (also defined by this document) between client applications and services.
This document defines the data structures and methods necessary to implement the shaded levels in the
protocol stacks, a peer-to-peer data transport (PPDT) based upon SBP-2. Note that client application(s)
may reside at either the initiator or the target (they are commonly found at the initiator) and the service(s)
at the corresponding SBP-2 functional role, target or initiator.

Figure 4 – Protocol stack (service at target)

Figure 5 – Protocol stack (service at initiator)

In order for the application(s) and service(s) to communicate in a peer-to-peer, transport-independent
manner, this document defines how SBP-2 may be used to implement uni- and bi-directional transport

Client(s)

PPDT

SBP-2 initiator

IEEE Std 1394-1995

Service(s)

PPDT

SBP-2 target

IEEE Std 1394-1995

Service(s)

PPDT

SBP-2 initiator

IEEE Std 1394-1995

Client(s)

PPDT

SBP-2 target

IEEE Std 1394-1995

LOGIN

Queues

Connections

LOGIN

Queues

Connections

PPDT_r06
September 9, 1999

12

flows for both control information and application data. Key concepts introduced below are used to explain
the details of the transport flow model:

function: A capability of the device expressed as a unit architecture (unit directory) that contains a
single logical unit (LU zero);

service: A protocol used to control an independently operable component of a function;

management service: A mandatory service provided for each function; it executes control requests
to establish or terminate connections to the other services of the function. The connection to this
function is implicitly established as the result of an SBP-2 login;

queue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set; and

connection: A queue or a pair of queues that affords access to a service. A connection may be
unidirectional or bi-directional; in the latter case, a connection may be blocking or nonblocking. Two
queues are necessary to implement a bi-directional, nonblocking connection.

4.2 Independent data paths for each service

ANSI NCITS 325-1998 describes all the work to be performed by a particular logical unit as a task set, a
collection of ORBs linked together as shown by Figure 6.

Figure 6 – Multiplexed queues in an SBP-2 task set

Because a single device function (logical unit) may be implemented as one or more services (protocols
used to control independently operable components of a function), each of which may require an
independent uni- or bi-directional transport flow, this document augments SBP-2 to permit multiplexed
queues within a single task set, as illustrated by Figure 7. A queue is an ordered set of ORBs within a task
set that does not block with respect to other queues that are part of the same task set; each ORB in the
task set is labeled to identify the logical queue to which it belongs. Although the target may in general
reorder the execution of ORBs within the task set, all of the ORBs within a particular queue are executed
in order. Within this framework, both the initiator and the target manage the single task set illustrated
above as the collection of logically independent queues illustrated below. The dashed lines connecting
ORBs represent the logical ordering of ORBs within each queue, not the actual pointers that link ORBs in
the task set.

ORB_POINTER
Queue xQueue 0Queue yQueue zQueue yQueue z

PPDT_r06
September 9, 1999

13

Figure 7 – Independent queues (logical model)

In theory the size of an SBP-2 task set is bounded only by the amount of memory available to the initiator
to store ORBs; in practice targets have sufficient memory to fetch only a subset of the task set, the
working set. Nonblocking behavior between the separate queues is achieved by restricting the size of the
task set to that of the target's working set. If the initiator never places more ORBs in the task set than the
target can accommodate in its working set, all outstanding ORBs may be fetched by the target and made
available for execution. The initiator restricts the number of outstanding ORBs on a queue by queue basis
so that a task slot in the working set is always available for each queue. Since the client application or
service may initiate more data transfer requests than can be simultaneously active in the task set, the
initiator marshals ORBs by queue number outside of the task set and enters them into the task set as task
slots become available.

Because queues do not block with respect to each other, nonblocking bi-directional data transfer between
initiator and target may be accomplished through the use of two queues, one for each direction.

4.3 Connection management

The multiplexed queue management scheme just described requires the allocation of target resources
(queue numbers and task slots) before it may be used. Collectively these resources constitute a
connection between a client and a service. This document defines methods by which connection(s) are
established and subsequently terminated and their resources freed.

Connections may be established by either an initiator or a target. Because of asymmetries in SBP-2, the
connection parameters differ dependent upon the source of the connection request— but at the transport-
independent level perceived by clients and services the connection mechanisms are peer-to-peer and
symmetric. When a client wishes to establish a connection with a particular service in the other device, it
provides a service ID, a unique string that specifies the desired service. Service IDs are maintained in a
separate registry and are assumed by this document to be well-known identifiers. If the specified service
exists in the other device (along with sufficient resources for the connection), the connection is created
and subsequently identified by the queue number(s) assigned to the connection.

Connections may be one of three different types:

Not yet included in the task set

Queue 0
Queue 0

Queue x
Queue x

Queue y
Queue yQueue y

Queue z

Queue 0

Queue xQueue x

Queue yQueue y

Queue zQueue zQueue z

TASK SET

PPDT_r06
September 9, 1999

14

– Unidirectional; the application data flow is one direction, either from the initiator to the target or vice
versa;

– Bi-directional (nonblocking); the application data flows in both directions with one queue used for
each of the directions; or

– Bi-directional (blocking); the data flows in both directions via a single queue which has the potential
to block. Nonblocking behavior is not guaranteed by the transport but must be a property of the
application itself. The queue used for management services is an example of a bi-directional,
blocking queue, but because it is restricted to single-threaded, serialized use it cannot block.

Once a connection is established it persists across bus reset(s) until explicitly terminated or abandoned as
a consequence of a logout.

Just as either initiator or target may establish a connection, either may terminate the connection
regardless of which one created the connection. A disconnect may be synchronized with the transport flow
in order to gracefully end the connection or it may preempt the transport flow if necessary. Once the
disconnect is complete, the target resources (queue numbers and task slots) are available for reuse.

4.4 Data transfer between initiator and target

Once a connection is established, application data may be transferred between initiator and target. SBP-2
transport flow ORBs are used to regulate the data transfer: each ORB specifies the direction (from the
target or to the target) and provides a buffer that is either the source or destination for the data. The target
initiates all data transfer requests, which permits it to pace the data transfer rate according to the
availability of its own resources. The initiator, on the other hand, makes all of the data (or a buffer to
accommodate all of the data) accessible the whole time the ORB is executed.

Data transfer from the initiator to the target is straightforward: the initiator signals an ORB with the
appropriate direction bit to the target and the target issues read requests to access the data. Data transfer
in the opposite direction, from the target to the initiator, is more complex. Because the target may not
signal an ORB to the initiator, it indicates to the initiator that data is available. In response, the initiator
signals an ORB with an empty buffer to receive the data and the target issues write requests to store the
data.

In both cases, ORB completion is indicated when the target stores a status block at the initiator. The
status block may specify a residual count if all available data was not transferred. The status block also
includes codes that describe successful or error completion of the data transfer described by the ORB.
The status block does not indicate whether or not the data was successfully utilized by an application
client or service— only whether or not the data was transferred across Serial Bus.

Data transfer between initiator and target is modeled either as a datagram or as a stream. When
datagram mode is used, each service data unit (SDU) fits within a single buffer described by an ORB. If no
SDU is available for transfer, the ORB may block and not be completed until an entire SDU is ready while
if the recipient is unable to accept the SDU (too small a buffer), no data is transferred and an error results.
In contrast, stream mode permits data to flow as it becomes available. An ORB that transfers data to a
target in stream mode cannot fail because the target’s buffer is too small while an ORB that transfers
stream data from a target may complete as soon as the first byte of data is available.1

4.5 Control requests and responses

In order to coordinate the flow of application data between initiator and target, a set of control operations
are defined. These operations take the form of a control request and a corresponding response; their
functions include interrogation of services supported by the target, establishment of a connection,

1 Applications may defer completion of an ORB until some minimum amount of data has been transferred. This

“watermark” capability may improve performance.

PPDT_r06
September 9, 1999

15

notification that target data is available for transfer to the initiator and confirmed release of queue
resources upon disconnection. Either initiator or target may originate a control request; processing is
single-threaded until a control response is returned.

Control requests and responses are data transferred between initiator and target in exactly the same
fashion as application data except that ORBs that describe control information specify a predefined queue,
zero. This bi-directional, blocking queue is reserved solely for control requests and responses and is not
available for the transfer of application data between initiator and target. Queue zero is automatically
allocated as a result of successful login and may not be released by either initiator or target until logout.

If neither initiator nor target has an outstanding control request, queue zero is empty (i.e., there are no
ORBs in the task set that specify queue zero). The operational sequences differ dependent upon the
originator of the control request, initiator or target, as illustrated below.

When the initiator originates a control request, it signals an ORB to the target that describes a buffer that
contains the control request. The initiator subsequently signals another ORB to the target that describes a
buffer available to receive the response. For the sake of efficiency, both ORBs may be linked and signaled
to the target at the same time as illustrated by Figure 8.

Figure 8 – Control request originated by initiator

In the figure above, the taraget fetches the control request from the initiator’s buffer and then stores
completion status at the initiators status_FIFO. The control request itself is not necessarily executed at
this point but it has been securely read by the target. After the request is executed, the target stores a
control response in the buffer provided by the second ORB and then stores completion status for that
ORB at the initiators status_FIFO. Successful receipt of the control response permits the initiator to
examine the response data to determine whether or not the request succeeded.

In the case where the target has a control request to make of the initiator, it first communicates to the
initiator that a queue zero ORB is needed. This attention condition may be communicated by any status
block, either one associated with the completion of application data transfer on a queue other than queue
zero, a status block for a completed queue zero transfer or an unsolicited status transfer. The result is the
same no matter what the source of the status block; this is illustrated by the upper portion of Figure 9.

TARGETINITIATOR

Queue 0

Queue 0
Buffer

Control
request Buffer

Control
response

PPDT_r06
September 9, 1999

16

Figure 9 – Control request originated by target

In response to a status block that indicates an attention condition, the initiator signals an ORB to the target
that describes a buffer available to receive the control request. Note that the initiator cannot signal an ORB
for the response at the same time because the control response is not yet available. Once the target has
transferred the control request to the initiator buffer, it stores completion status for the ORB at the initiator
status_FIFO. Receipt of this status block permits the initiator to retrieve the control request, process it,
prepare a control response and signal an ORB to the target that describes a buffer that contains the
control response. After the target has read the control response, it stores completion status at the initiator
status_FIFO.

When control requests are simultaneously available at both initiator and target, the order in which they are
processed is arbitrary so long as request execution is single-threaded. An initiator may not originate a
subsequent request if it detects a target attention condition during the current control request and
response cycle.

4.6 Unsolicited status

As described above, a target communicates an attention condition to an initiator when the target has a
control request available. For the sake of efficiency, the attention condition is often included in completion
status for some soon to be completed ORB. If the target’s task set is empty, there are no eligible ORBs
and the time before the initiator signals a new ORB is indeterminate. In this case, the target may store an
unsolicited status block at the initiator status_FIFO.

The essential nature of an unsolicited status block is that it is not associated with any ORB. As a
consequence, it is useful only for information that is generic to the target (such as the attention condition)
and useless to communicate more specific information (such as the state of a particular queue).

TARGETINITIATOR

Queue 0

Queue 0
Control

response

Buffer
Control
request

Buffer

Status FIFO Status block

PPDT_r06
September 9, 1999

17

5 Data structures

This document defines the format of those parts of the SBP-2 ORB and status block reserved by ANSI
NCITS 325-1998 for specification by command set standards. It also defines a format for control
information transferred between initiator and target. All data structures defined in the following clauses
shall be aligned on quadlet boundaries.

5.1 Transport flow ORBs

ANSI NCITS 325-1998 defines command block ORBs for SBP-2 devices; these have a common 20-byte
header and leave the definition of the subsequent quadlets to individual command set standards. Devices
compliant with this standard shall use 32-byte command block ORBs (renamed transport flow ORBs to
emphasize their function) whose format is illustrated by Figure 10. Transport flow ORBs are used to
regulate the transfer of application data or control information between initiator and target.

Figure 10 – Transport flow ORB

The usage of the next_ORB, data_descriptor, rq_fmt, spd, max_payload, page_size and data_size fields
and the notify and page_table_present bits (abbreviated as n and p, respectively, in the figure above) is
defined by ANSI NCITS 325-1998. The rq_fmt field shall be zero.

NOTE – For most SBP-2 implementations the notify bit should always be one so that the SBP-2 initiator
software may accurately determine completion status for each ORB; this is a consequence of the unordered
execution model. Other implementations that do not require completion status notification for each ORB may
be possible if information is shared between the SBP-2 initiator and its client application(s) but the
implementation details are beyond the scope of this document.

The direction bit (abbreviated as d in the figure above) shall specify the direction of data transfer for the
buffer described by data_descriptor. If the direction bit is zero, the target shall use Serial Bus read
transactions to fetch data from the buffer (the flow direction is from the initiator to the target). Otherwise,
when the direction bit is one, the target shall use Serial Bus write transactions to store data in the buffer
(the flow direction is from the target to the initiator).

NOTE – The direction of data transfer is determined solely by the direction bit without reference to the queue
number. Unspecified behavior may occur if an ORB’s direction bit does not match the expected data transfer
direction for the queue.

spd

reservedf ms queue

data_size

signature

n rq_fmt
(0) r d max_payload page_sizep

next_ORB

data_descriptor

most significant

least significant

reserved

PPDT_r06
September 9, 1999

18

The final bit (abbreviated as f in the figure above) shall be set to one to indicate that the initiator shall not
signal any subsequent ORBs with the same queue value as this ORB until the target allocates the queue
number in a future CONNECT request or response. Otherwise the value of final bit shall be zero and the
initiator may continue to signal ORBs for the queue. When the final bit is one the notify bit shall also be
one.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the initiator to the target. The meaning of the special bit is unspecified
when either of the data_size or queue fields are zero or the direction bit is one. Otherwise the meaning
and usage of the special bit are application-dependent and shall apply to all of the application data
contained within the buffer described by the ORB.

NOTE – Stream socket abstractions include the notion of out of band data, as some transport protocols allow
portions of incoming data to be marked as "special" in some way. These special data blocks may be delivered
to the user out of the normal sequence— for example, expedited data in X.25 and other OSI protocols or the
use of urgent data in TCP by BSD Unix. The special bit enables such usage to be mapped to a transport
protocol based on SBP-2.

The end_of_message bit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the initiator to the target. The meaning
of the end_of_message bit is unspecified when the direction bit is one. Otherwise, when end_of_message
is one, a boundary exists after the last byte of application data or control information described by the
ORB. In the case of application data, the nature of the boundary and its interpretation shall be specified by
the service definition. When the queue field is zero, the end_of_message bit shall also be one; all control
information for a single request or response shall be contained within one buffer.

NOTE – When end_of_message is one and data_size is zero, a boundary exists at the end of application data
or control information previously transferred to the target. The target flushes this data to the receiving
application client and indicates the end_of_message condition.

The queue field shall specify either queue zero or a queue number assigned the target in either a
CONNECT request or response (see 0). When the queue field is zero, the final bit shall be zero and the
notify bit shall be one.

The signature field shall contain an identifying number assigned by the initiator and shall be unique within
the context of a queue. Individual data buffers are uniquely identified by the combination of queue and
signature. For a particular queue, an initiator shall not reuse a signature value until either the connection
has been reset (see 0) or a status block has been received for a subsequent ORB in the same queue.
This field is used to facilitate the resumption of data transfer after a bus reset or other transient
interruption while minimizing retransmission of data securely stored prior to the interruption (see 7.5).

5.2 Status block

As described by ANSI NCITS 325-1998, a target may store status at an initiator status_FIFO address
when a request completes (successfully or in error) or because of an unsolicited event (device status
change). The status_FIFO address is obtained either explicitly from the ORB to which the status pertains
or implicitly from the fetch agent context. Whenever the target has status to report and is enabled to do so,
it shall store the status block illustrated by Figure 11.

Without regard to the value of the notify bit in the ORB to which status pertains, the target shall store
status if any of the dead, attention, target_data_pending, special and end_of_message bits or either of the
status and residual fields are nonzero.

PPDT_r06
September 9, 1999

19

Figure 11 – Status block format

The definition and usage of the src, resp, len, sbp_status, ORB_offset_hi and ORB_offset_lo fields, as
well as the dead bit (abbreviated as d in the figure above), are specified by ANSI NCITS 325-1998.

The len field shall have a value of three to indicate that the length of the status block is four quadlets.

The status field shall specify the completion status of the transport flow requested by the ORB, as
encoded by the table below.

The attention bit (abbreviated as a in the figure above) indicates the availability of target control
information. When the attention bit is one, the initiator should post an ORB for queue zero to retrieve the
control information. Once set to one by the target, this bit shall remain set until the initiator successfully
retrieves the control information.

The target_data_pending bit (abbreviated as t in the figure above) indicates the availability of target
application data for the queue specified by the ORB identified by ORB_offset_hi and ORB_offset_lo.
When the target_data_pending bit is one, the initiator should post an ORB for the specified queue to
retrieve the application data. The target shall zero this bit when there is no pending application data
awaiting transfer to the initiator. The meaning of target_data_pending is unspecified for an unsolicited
status block.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the target to the initiator. The meaning of the special bit is unspecified
when the value of the src field is two, when (in the ORB identified by ORB_offset_hi and ORB_offset_lo)
any of the data_size or queue fields or the direction bit are zero or if no data has been transferred. The
meaning and usage of the special bit are application-dependent and shall apply to all of the application
data contained within the buffer described by the ORB.

The end_of_message bit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the target to the initiator. The meaning
of the end_of_message bit is unspecified when the value of the src field is two or when the direction bit (in
the ORB identified by ORB_offset_hi and ORB_offset_lo) is zero. Otherwise, when end_of_message is
one, a boundary exists after the last byte of application data or control information described by the ORB.
In the case of application data, the nature of the boundary and its interpretation shall be specified by the
service definition. When the control bit (in the ORB identified by ORB_offset_hi and ORB_offset_lo) is

status Description

0 The application data or control information has been successfully
transferred; consult the residual field for details of the actual transfer length.

1 Invalid queue; the queue identified in the ORB has not been allocated to an
active connection.

2 Target reset by another initiator; all tasks aborted.

residual

ORB_offset_lo

src ORB_offset_hi

status

most significant

least significant

sbp_statusresp

r

lend

st ma reserved

PPDT_r06
September 9, 1999

20

one, the end_of_message bit in the associated status block shall also be one; all control information for a
single request or response shall be contained within one buffer.

The residual field shall specify the difference between the requested and actual data transfer lengths, in
bytes.

When residual is negative, no data has been transferred because of a mismatch between the size of the
buffer and the data transfer length acceptable to the target: either the target's buffer space is too small to
accept the data described by the ORB to which the status pertains or else the buffer described by the
pertinent ORB is too small to accept the data available from the target. In these cases, the meaning of
residual depends upon the value of the direction bit of the ORB to which the status pertains. When
direction is zero (the flow direction is from the initiator to the target), the target shall calculate residual by
subtracting the size of the buffer provided by the initiator from the maximum acceptable data transfer
length. Otherwise, when direction is one (the flow direction is from the target to the initiator), the target
shall calculate residual by subtracting the minimum acceptable data transfer length from the size of the
buffer provided by the initiator. Negative values shall be encoded in two’s complement notation.

Otherwise, when residual is greater than or equal to zero, there is no mismatch between the size of the
buffer and the data transfer length to prevent data transfer. The target shall calculate residual by
subtracting the actual data transfer length from the size of the buffer provided by the initiator. A residual
value greater than zero is not necessarily indicative of an error.

5.3 Control information

Control information, both requests and their corresponding responses, may be exchanged between
initiator and target via transport flow ORBs whose queue field is zero (control ORBs). This indicates that
the data in the buffer (or the data to be stored in the buffer) associated with the ORB is control information
rather than application data. Only one control request or response shall be transferred by an ORB; when
the direction bit is zero the end_of_message bit in the ORB shall be one, otherwise the end_of_message
bit in the status block shall be one. If the initiator has provided more control information than the target can
accept or if the buffer is too small to receive all the target’s control information, no transfer shall take place
and the residual field shall indicate the appropriate transfer size. The format of the control information in
the buffer is illustrated by Figure 12.

Figure 12 – Control information format

The rq bit shall specify whether the control function is a request or a response. A value of one indicates a
request.

The ctrl_function field shall specify the control function, as defined by the table below.

responserq ctrl_function reserved

parameter(s)

most significant

least significant

PPDT_r06
September 9, 1999

21

The response field is valid only when the rq bit is zero. In this case, it encodes a response indication for
the corresponding control function, as defined by the table below.

The remainder of the control information, up to the maximum size specified by data_size in the ORB that
references the control information buffer, shall consist of zero or more parameters identified by a
parameter ID (see Table 1). Relative to the start of the buffer, each parameter shall be quadlet-aligned and
occupy an integral number of quadlets. The first parameter shall start in the second quadlet of control
information and subsequent parameters, if any, shall immediately follow the preceding parameter. The
order in which parameters appear is unimportant. Any quadlets that follow the last parameter, up to the
end of the control information, shall be cleared to zero.

ctrl_function Name Comment

0 Reserved for future standardization

1 CONNECT Establish a connection with a particular service

2 SHUTDOWN
QUEUE

3 RESET
CONNECTION

Resynchronize a connection between a client
application and the service

3 RELEASE
QUEUE

4 SERVICE
DIRECTORY

Query all the services implemented (identified by a
list of service Ids)

5 STATUS Query the availability of target data for all queues
implemented by the target

6 – 7F16 Reserved for future standardization

response Definition

0 Request completed OK; response parameters are
meaningful.

1 Unknown control function.

2 Insufficient resources are available to complete the
request; the same request may succeed if resubmitted
later.

3 The service identified by the SERVICE_ID parameter
does not exist.

4 Mismatch between actual and expected queue
number parameter(s).

5 The connection request is refused.

6 The connection identified by the queue number
parameter(s) does not exist.

FF16 Unspecified error.

PPDT_r06
September 9, 1999

22

Table 1 – Parameter ID values

The parameter ID shall specify the parameter format, either immediate or variable-length. The most
significant bit of the parameter ID determines the format; parameters whose ID values are in the range
zero to 7F16, inclusive, shall conform to the format specified by Figure 13 while those in the range 8016 –
FF16, inclusive, shall conform to the format specified by Figure 14. All parameter ID values not specified
are reserved for future standardization.

The format of immediate parameters is shown below.

Figure 13 – Immediate parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The parameter_value field shall specify the immediate value of the parameter. Unless otherwise specified
for a particular value of parameter_ID, the value field shall contain an unsigned 24-bit number.

The format of variable-length parameters (which are usually ASCII text strings) is shown below.

Parameter

ID Name
Value

restrictions Description

0 0 Indicates end of parameter list in control information
(optional).

1 TASK_SLOTS Minimum 1 For a particular connection, the maximum number of ORBs
permitted in the task set. The initiator shall observe the limit
established by the target and may optionally provide this
parameter to indicate a self-imposed limit. Task slots are
allocated per connection and may be used for any of the
connection's queues.

8216 SERVICE_ID 40 bytes
maximum

An ASCII text string (without leading or trailing blank
characters) that uniquely identifies a service.

3 I2T_QUEUE The queue number assigned to the connection for the
transport of application data from the initiator to the target

4 T2I_QUEUE
Nonzero;

FF16 maximum The queue number assigned to the connection for the
transport of application data from the target to the initiator

8516 QUEUE_INFO A bit map that reports the state of target_data_pending for
all queues implemented by the target.

6 MODE Specifies the desired mode, datagram or stream, at the time
a connection to a service is established.

parameter_ID parameter_value
most significant least significant

PPDT_r06
September 9, 1999

23

Figure 14 – Variable-length parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The length field shall specify the length of the parameter_value field, in bytes. Pad bytes, if present, are
excluded from the value of length.

The parameter_value field shall contain the value of the parameter and shall commence with the most
significant byte of the parameter value. If the length of the parameter is not a multiple of four, the
parameter value shall be padded with trailing bytes of zero.

5.4 Queue information

Queue information is an array; each entry reports status information for the queues implemented by the
target. The length of the array is implementation-dependent (determined by the largest queue number
supported by the target) and shall conform to the format illustrated by Figure 15.

Figure 15 – Queue information format

The value of parameter_ID shall be 8516.

The value of length shall be greater than the largest queue number implemented by the target and less
than or equal to 256.

Each queue_info entry provides information for an individual queue; this array of bytes is directly indexed
by the queue number. The first entry in the array is reserved.2 For all other queues, the format of the
queue_info byte is specified by Figure 16.

2 Queue zero is always active; the availability of control information is indicated by the status block attention bit.

parameter_ID (8516) length

parameter_ID length

parameter_value

most significant

least significant

pad with zero bytes as necessary

most significant

least significant

reserved queue_info[1] queue_info[2] queue_info[3]

queue_info[FC16] queue_info[FD16] queue_info[FE16] queue_info[FF16]

PPDT_r06
September 9, 1999

24

Figure 16 – Queue information byte format

The active bit shall be zero if the queue is not implemented by the target or not assigned to an established
connection. A value of one indicates that the queue is in use by a connection.

The target_data_pending bit (abbreviated as t in the figure above) indicates the availability of target
application data for the queue. When the target_data_pending bit is one, the initiator should post a
transport flow ORB for the specified queue to retrieve the application data. The target shall zero this bit
when there is no pending application data awaiting transfer to the initiator.

active treserved
most significant least significant

PPDT_r06
September 9, 1999

25

6 Control operations

Before application client(s) and service(s) may exchange data in uni- or bi-directional transport flows
(explained in detail in section 7), control operations are necessary to set up the communication paths. This
section specifies the methods used by both initiator and target to establish and manage connections for
these transport flows.

6.1 Login and queue zero

Access to a target compliant with this standard commences with an SBP-2 login request by the initiator.
Upon successful completion of the login request, the target has reserved resources for the use of the
initiator:

– SBP-2 registers assigned by the target at the time of the login (the AGENT_STATE,
AGENT_RESET, ORB_POINTER, DOORBELL and UNSOLICITED_STATUS_ENABLE registers);

– queue zero, the control operations queue; and

– two task slots for use by queue zero ORBs.

Once queue zero exists, either initiator or target may use it in a peer-to-peer fashion to communicate
control information, requests or responses, to the other. At no time shall the task set contain more than
two control ORBs.

The completion of a request requires two ORBs, one, which describes the control information buffer that
contains the request and a complementary ORB which describes the control information buffer for the
response. Although queue zero provides full peer-to-peer functionality between initiator and target, the
details of its use are asymmetric and vary according to whether the initiator or the target is the requester.

When an initiator issues a request to a target, they shall perform the following operations:

a) The initiator shall store the request and its associated parameters (if any) in a buffer in system
memory and signal to the target fetch agent an ORB, whose queue field and direction bit are zero
and end_of_message bit is one, that describes the control information buffer;

b) The target shall fetch the ORB and read the control information buffer. The status block stored by
the target to complete the ORB may have its attention bit set to one to indicate that the target intends
to transfer control information (the response) to the initiator;

c) At any time the initiator receives a status block whose attention bit is one and there is no ORB in the
task set whose queue field is zero and direction bit is one, the initiator shall create such an ORB and
place it in the task set; and

d) Once the target has executed the indicated request and there is an ORB in the working set whose
queue field is zero and direction bit is one, the target shall store the response data in the buffer
described by the ORB and then store completion status for the ORB. So long as the target has
pending control information to transfer to the initiator, it shall continue to set the attention bit to one in
any status block (including unsolicited status) stored into the initiator status_FIFO.

NOTE – In order to reduce ORB fetch latency, the initiator may place two control information ORBs in the task
set at the same time, the first for the request (with a direction bit of zero) and the second for the response (with
a direction bit of one). Although the algorithm described above works correctly even if the initiator awaits a
status block whose attention bit is one before signaling a target response ORB to receive the response data, it
is more efficient to post both ORBs at the same time.

When a target issues a request to an initiator, they shall perform the following operations:

PPDT_r06
September 9, 1999

26

a) The target shall set the attention bit to one in a status block stored into the initiator status_FIFO.
Either unsolicited status or completion status associated with an ORB may be used. So long as the
target has pending control information to transfer to the initiator, it shall continue to set the attention
bit to one in any status block stored into the initiator status_FIFO.

b) At any time the initiator receives a status block whose attention bit is one and there is no ORB in the
task set whose queue field is zero and direction bit is one, the initiator shall create such an ORB and
place it in the task set;

c) Once there is an ORB in the working set whose queue field is zero and direction bit is one, the target
shall store the control information data (request) in the buffer described by the ORB and then store
completion status for the ORB. The attention bit shall be zero in the status block associated with the
ORB;

d) When the initiator has executed the indicated request, it shall store the response and its associated
parameters (if any) in a buffer in system memory and signal to the target fetch agent an ORB that
describes the control information buffer. The ORB’s queue field and direction bit shall be zero and
the end_of_message bit shall be one;

e) The target shall fetch the ORB and read the response from the control information buffer. The status
block stored by the target to complete the ORB may have its attention bit set to one if the target
intends to transfer other control information (request or autonomous response) to the initiator.

It is possible for both initiator and target to initiate requests at roughly the same time. In this case the
working set contains an ORB for transfer of the request from initiator to target while the status block
attention condition is simultaneously asserted by the target. The ordered execution properties of queue
zero give a natural precedence to initiator requests over target requests, as follows. When a target fetches
an ORB whose queue field and direction bit are zero and whose end_of_message bit is one, the request
contained in the control information shall be processed before a request is transferred to the initiator.
Consequently, if a target has an uncompleted initiator request when it fetches a control ORB and whose
direction bit is one it shall not store any control information except the response that completes the
request.

When neither initiator nor target have outstanding requests or responses, the control queue (queue zero)
is idle and there shall be no ORBs in the task set whose queue field is zero.

6.2 Autonomous response information

The preceding clause describes the use of queue zero for request / response pairs between initiator and
target. It is also possible for either initiator or target to autonomously transfer response information to the
other. Autonomous response information is typically status information and does not necessarily require
any additional action on the part of the recipient.

Autonomous response information may be sent for any of the ctrl_function values enumerated in the table
below.

The response code in autonomous response information shall be zero.

Autonomous response information shall not be transferred while there is an uncompleted control request.
A target requests the transfer of autonomous response information by means of the status block attention
bit. If a target asserts attention and subsequently fetches an initiator request ORB, it shall first complete
the initiator’s control request and transfer the corresponding response information to the initiator before

ctrl_function Name

4 SERVICE DIRECTORY

5 STATUS

PPDT_r06
September 9, 1999

27

transferring the autonomous response information. The attention bit shall remain asserted in any status
blocked stored in the initiator status_FIFO while the transfer of the autonomous response information is
pending.

6.3 Service discovery

Services implemented by either initiator or target are uniquely identified by their service ID, an ASCII string
which may be registered with TBD. A client application that wishes to establish a connection with a
particular service may attempt the connection without a priori knowledge that the service is implemented
or the client application may request service directory information.

NOTE – Vendor-dependent services should be identified by a service ID string unlikely to be used by another
vendor. One method is to include the vendor's name in the string.

A service discovery request shall have a ctrl_function code of SERVICE DIRECTORY and no parameters.
The response information shall contain zero or more SERVICE_ID parameters that identify services
implemented by the target. There is no requirement that all implemented services be listed in the service
directory. The order of the SERVICE_ID parameters in the response is unspecified.

The service directory information available from a target may not fit within the buffer provided by the
initiator. In this case, the target shall not transfer any response information but shall complete the queue
zero ORB with a status of zero and a residual value that indicates the size of the available response
information. The target shall discard the response information and, unless there is other pending control
information awaiting transfer to the initiator, shall clear the attention bit in the status block. The initiator
may reissue the service discovery request if it can provide a buffer large enough to accommodate the
service ID response information.

An alternative to the service discovery request is to establish a connection to a well-known service ID,
"PPDT SERVICES". Target support for this service is optional, but if implemented consists of a
unidirectional queue to transfer service ID information to the initiator in stream mode. The initiator may
receive service ID information by signaling transport flow ORBs whose direction bit is one and whose
queue field specifies the queue identified in the connection response. When all available service ID
information has been transferred to the initiator, the target shall set the end_of_message bit to one in the
completion status for the transport flow ORB that completed the transfer. Either the initiator or the target
may initiate queue shutdown.

The service ID information shall consist of quadlet-aligned SERVICE_ID parameters in the format
specified by Figure 14. There is no requirement that all implemented services be described by the
parameters and their order is unspecified.

6.4 Connection management

Control ORBs are used to establish and terminate connections that permit the flow of application data
between clients and services in either initiators or targets. The control requests are CONNECT,
SHUTDOWN QUEUE and RELEASE QUEUE. The connection type is established when the connection is
created and is implicitly encoded by the I2T_QUEUE and T2I_QUEUE parameters present in the
connection request or response information, as specified by Table 2.

Table 2 – Connection type encoded by queue ID parameters

Connection type I2T_QUEUE value T2I_QUEUE value

unrestricted —
Unidirectional

— unrestricted

PPDT_r06
September 9, 1999

28

Bi-directional
(nonblocking) not equal to T2I_QUEUE not equal to I2T_QUEUE

Bi-directional
(blocking) equal to T2I_QUEUE equal to I2T_QUEUE

Unidirectional connections are described by a single parameter, I2T_QUEUE or T2I_QUEUE. If both
parameters are present, the connection is bi-directional and is either blocking or nonblocking according to
whether the two parameter values are equal or different, respectively.

6.4.1 Connection establishment

Before a client application may communicate with a service, necessary resources shall be allocated and
confirmed by means of a control request with a ctrl_function code of CONNECT and its corresponding
response. The operations are fundamentally similar whether the service resides at the initiator or the
target, but because the initiator and target control different resources, the procedures are described
separately.

The only initiator resource required for a connection is sufficient system memory to hold the ORBs for that
portion of the task set allocated to the connection.

The target resources required for a connection are one or two available queue numbers, local memory to
hold active ORBs and their associated context (up to the maximum set by the target via the TASK_SLOTS
parameter) and an application client to provide the requested service.

Once a successful response has been received for a connection request, the initiator may place ORBs
into the task set that use the queue number(s) specified in the target response data. The queue number(s)
remain valid until either a LOGOUT (either explicit on the part of the initiator or implicit as the result of a
failure to reconnect after a bus reset), a shutdown of either or both queues or the connection is aborted.

6.4.1.1 Connection established by an initiator

When an application client at an initiator desires to establish a connection with a target service, it shall
create a control ORB whose buffer contains a CONNECT control request. The initiator shall specify the
SERVICE_ID and MODE parameters. The initiator may specify the TASK_SLOTS parameter, in which
case the initiator shall guarantee that the task set never contains more active ORBs for the connection
than the value set by TASK_SLOTS.

If the connection is established, the target shall return response data that specifies TASK_SLOTS and one
or both of the I2T_QUEUE and the T2I_QUEUE parameters. When the initiator has provided the optional
TASK_SLOTS parameter in its request, the target should return a TASK_SLOTS value less than or equal
to that specified by the initiator.

Connection requests may fail because of a lack of target resources. This failure mode is probably
transient; if the CONNECT control request is retried at some unspecified future time it may succeed.
Other failure modes, indicated by the resp code, are fatal and should not be retried.

6.4.1.2 Connection established by a target

An application client at a target that desires to establish a connection with an initiator service shall create a
buffer that contains a CONNECT control request and signal the initiator to retrieve the control request by
asserting the attention bit in a status block. The CONNECT control request shall specify the SERVICE_ID,
MODE, TASK_SLOTS and one or both of the I2T_QUEUE and T2I_QUEUE parameters. If the connection
is established, the initiator shall guarantee that the task set never contains more active ORBs for the
connection that the TASK_SLOTS value provided by the target.

PPDT_r06
September 9, 1999

29

If the requested service exists at the initiator and supports the requested transport flow mode, datagram or
stream, the connection may be confirmed by a control response from the initiator. No parameters are
required in the control response, but if the initiator specifies the TASK_SLOTS parameter it shall
guarantee that the task set never contains more active ORBs for the connection than the value provided.

The initiator shall not use the queue number(s) identified by the I2T_QUEUE or T2I_QUEUE parameters
until successful completion status has been stored at the initiator’s status_FIFO for the ORB that
transferred the control response to the target.

Just as a target may refuse a connect request because of insufficient resources, so may an initiator. Such
a failure is probably transient and may be retried at some unspecified future time.

6.4.2 Queue shutdown

Although connections, which consist of one or two queues, are established by a single control function,
there is no corresponding unified function to request disconnection. Instead, each queue may be
shutdown individually. When all queues allocated to a connection are shutdown, the connection no longer
exists and all resources allocated to it may be released.

Either the client application or the service may request queue shutdown; there are no fundamental
differences. A more important consideration is whether it is the queue’s data producer or data consumer
that initiates the shutdown. Queue shutdown requested by the producer may be orderly while shutdown
requested by the consumer is unlikely to be orderly, as summarized by the table below.

An orderly shutdown occurs when the consumer is able to successfully receive all the data produced prior
to queue shutdown. An abortive shutdown is characterized by the loss of data between the two endpoints.
Whether or not the shutdown of a bi-directional queue is abortive or orderly is dependent upon usage
rules agreed by the client application and service and is beyond the scope of this document.

6.4.2.1 Queue shutdown by an initiator

When an application client or service at an initiator desires to shutdown a queue, it shall signal a transport
flow ORB to the target whose final and notify bits are one and whose queue field specifies the queue to be
shutdown. The initiator shall not signal any other ORBs with the same queue value unless the target
allocates the queue number upon future establishment of a connection. A data buffer may be associated
with a transport flow ORB whose final bit is one.

If the direction of data transfer via the queue is from target to initiator, the initiator shall signal a control
ORB whose buffer contains a SHUTDOWN QUEUE control request whose T2I_QUEUE parameter is
equal to the value of the queue field in the final ORB. This avoids a deadlock with the target and insures
that the final ORB is eventually fetched and processed by the target. If completion status for the control
ORB indicates that the SHUTDOWN QUEUE control request was not delivered to the target, the initiator
shall either signal the control ORB again or reset the target by a write to its RESET_START register.

Queue shutdown requestor
Data transport flow

Initiator Target

Initiator to target
(I2T_QUEUE) Orderly Abortive

Target to initiator
(T2I_QUEUE) Abortive Orderly

Bi-directional
(I2T_QUEUE equals

T2I_QUEUE)
Application-dependent

PPDT_r06
September 9, 1999

30

NOTE – If the direction of data transfer via the queue is from initiator to target, the initiator may signal a control
ORB whose buffer contains a SHUTDOWN QUEUE control request whose I2T_QUEUE parameter is equal to
the value of the queue field in the final ORB. This may be necessary if the target is unresponsive and not
processing ORBs for the queue.

A target that receives a SHUTDOWN QUEUE request shall commence execution of all active ORBs for
the queue identified by the I2T_QUEUE or T2I_QUEUE parameter. If the direction of data transfer is from
the initiator to the target, the target shall not defer completion of any ORB for the queue solely because
the receiving client application or service has not provided sufficient buffer space but shall complete the
ORB without transferring all available data. Otherwise, if the direction of data transfer is from the target to
the initiator, the target shall not defer completion of any ORB for the queue solely because the client
application or service has not provided sufficient data. is not available to transfer to the initiator. If no data
or, when the connection was established in stream mode, data insufficient to fill the initiator’s buffer is
available, transport flow ORBs for the queue shall be completed and Regardless of the direction of data
transfer, the residual field in completion status for the ORB shall report the actual data transfer.

Once the target completes any indicated data transfer for the final ORB, it shall mark the queue as
provisionally shutdown and store completion status at the initiator’s status_FIFO. The target may not yet
release the resources associated with the queue. If the initiator signals any other ORBs whose queue field
identifies the provisionally shutdown queue, the target shall reject these with a completion status of six
(invalid queue).

After the target has completed the final ORB, it shall discard any data generated by a client application or
service for the provisionally shutdown queue. Because a service or client application at the initiator is
unaware of the discarded data, if any, the shutdown of a queue used for data transfer from the target to
the initiator may be disorderly (abortive) when requested by the initiator.

When the initiator receives completion status for the final ORB, it shall signal a control ORB whose buffer
contains a RELEASE QUEUE control request. For a unidirectional queue, the initiator shall specify the
I2T_QUEUE or T2I_QUEUE parameter, as appropriate, to identify the queue to be released. For a bi-
directional queue, the initiator shall specify both parameters and their values shall be equal. If completion
status for the control ORB indicates that the RELEASE QUEUE control request was not delivered to the
target, the initiator shall either signal the control ORB again or reset the target by a write to its
RESET_START register. Once completion status indicates successful receipt of the RELEASE QUEUE
control request by the target, no additional initiator action is necessary. The RELEASE QUEUE control
request has no corresponding response.

A target that receives a RELEASE QUEUE control request shall ignore it unless the queue specified by
the whose I2T_QUEUE or T2I_QUEUE parameter identifies a queue marked provisionally shutdown In
this case the target may should release all resources allocated to the queue. Otherwise the target shall
ignore the request. If no active queues remain for the connection to which the queue was originally
allocated, any additional connection resources mayshould be released. The target shall not respond to a
RELEASE QUEUE control request.

6.4.2.2 Queue shutdown by a target

When an application client or service at a target desires to shutdown a queue, it shall create a control
ORB whose buffer contains a SHUTDOWN QUEUE control request and signal the initiator to retrieve the
control request by asserting the attention bit in a status block. For a unidirectional queue, the target shall
specify the I2T_QUEUE or T2I_QUEUE parameter, as appropriate, to identify the queue to be shutdown.
For a bi-directional queue, the target shall specify both parameters and their values shall be equal. After a
successful completion response is received for Once completion status indicates successful receipt of the
SHUTDOWN QUEUE request by the initiator, the target shall not defer completion of any ORB for the
queue. When the direction of data transfer is from the initiator to the target, transport flow ORBs shall be
completed without data transfer. Otherwise, when the direction of data transfer is from the target to the
initiator, the completion of transport flow ORBs shall not be delayed solely because insufficient data is not

PPDT_r06
September 9, 1999

31

available to transfer to the initiator. If no data or, when the connection was established in stream mode,
data insufficient to fill the initiator’s buffer is available, transport flow ORBs for the queue shall be
completed andIn both cases, the residual field in completion status for the transport flow ORBs shall
report the actual data transfer.

NOTE – If the direction of data transfer via the queue is from target to initiator and an orderly shutdown is
intended, the target’s client application or service should cease generation of data and the target should
complete all outstanding data transfers before issuing the SHUTDOWN QUEUE request.

An initiator that receives a SHUTDOWN QUEUE request shall signal a transport flow ORB to the target
whose final and notify bits are one and whose queue field specifies the queue identified in the control
parameters for the request. The initiator shall not signal any other ORBs with the same queue value
unless the target allocates the queue number upon future establishment of a connection. A data buffer
may be associated with a transport flow ORB whose final bit is one.

Once the target completes any indicated data transfer for the final ORB, it shall mark the queue as
provisionally shutdown and store completion status at the initiator’s status_FIFO. The target may not yet
release the resources associated with the queue. If the initiator signals any other ORBs whose queue field
identifies the provisionally shutdown queue, the target shall reject this with a completion status of six
(invalid queue).

After the target has completed the final ORB, it shall discard any data generated by a client application or
service for the provisionally shutdown queue. Because a service or client application at the initiator is
unaware of the discarded data, if any, the shutdown of a queue used for data transfer from the target to
the initiator may be disorderly (abortive) when requested by the initiator.

When the initiator receives completion status for the final ORB, it shall signal a control ORB whose buffer
contains a RELEASE QUEUE control request. For a unidirectional queue, the initiator shall specify the
I2T_QUEUE or T2I_QUEUE parameter, as appropriate, to identify the queue to be released. For a bi-
directional queue, the initiator shall specify both parameters and their values shall be equal. If completion
status for the control ORB indicates that the RELEASE QUEUE control request was not delivered to the
target, the initiator shall either signal the control ORB again or reset the target by a write to its
RESET_START register. Once completion status indicates successful receipt of the RELEASE QUEUE
control request by the target, no additional initiator action is necessary. The RELEASE QUEUE control
request has no corresponding response.

A target that receives a RELEASE QUEUE control request shall ignore it unless the queue specified by
the whose I2T_QUEUE or T2I_QUEUE parameter identifies a queue marked provisionally shutdown In
this case, the target may should release all resources allocated to the queue. Otherwise the target shall
ignore the request. If no active queues remain for the connection to which the queue was originally
allocated, any additional connection resources mayshould be released. The target shall not respond to a
RELEASE QUEUE control request.

6.4.2.3 Simultaneous queue shutdown by initiator and target

Unaware of the other’s actions, an initiator and a target might initiate shutdown of the same queue
simultaneously. In this case, there is no guarantee of orderly shutdown.

If an initiator receives a SHUTDOWN QUEUE control request that identifies a queue for which a final ORB
has already been signaled it shall take no action other than to return a successful completion response to
the target.

No special action is required of a target when a initiator signals a final ORB at roughly the same time as
the target issued a SHUTDOWN QUEUE request. The unordered, split transaction properties of Serial
Bus make it impossible for the target to distinguish this situation from a delay in the receipt of the
SHUTDOWN QUEUE return of the completion response for the control request.

PPDT_r06
September 9, 1999

32

6.4.3Resetting a queue

6.5 Queue status information

A target may transfer autonomous queue status information to an initiator when target data is available for
a queue (i.e., target_data_pending would be set to one in completion status for any transport flow ORBs
for the queue) but the initiator has not signaled any ORBs for the queue. In this circumstance, the target is
not able to indicate the presence of data except by an indirect route.

The target may indicate the pending control information by setting the attention bit to one in any status
block stored at the initiator's status_FIFO. The initiator should post a control ORB whose direction bit is
one in order to retrieve the control information from the target (see X). When such an ORB is signaled, the
target may transfer response information that contains a QUEUE_INFO parameter. The queue information
notifies the initiator which queues have target data available.

If there are no ORBs in the target's task set, the target may communicate the attention bit to the initiator by
means of an unsolicited status block. Once the initiator is aware of a target attention condition, it should
post a control ORB whose direction bit is one.

PPDT_r06
September 9, 1999

33

7 Transport flow operations

Once a connection is established between a client application and a service, work is accomplished by the
uni- or bi-directional flow of application-dependent data between the two. This section describes transport
flow (and error recovery procedures) from the viewpoint of a queue instead of that of a connection; the
reader may generalize from a single queue's operation to two coordinated queues that form a nonblocking
bi-directional connection.

Service implementers select a datagram or stream model of transport flow. The datagram model is the
simplest: there is a one-to-one relationship between ORBs, buffers and service data units (SDUs), as
illustrated by Figure 17. The end of an SDU is demarcated by the end_of_message bit, which is always
one when the datagram model is used.

Figure 17 – Transport flow (datagram model)

The stream model permits SDU boundaries (e.g., the separation between pages or print jobs for a printer)
to occur without regard for the boundaries between data buffers specified by different ORBs. Figure 18
illustrates the relationship between stream data, the ORBs that describe its buffers and the SDUs.

Figure 18 – Transport flow (stream model)

SDU

SDU

SDU

SDU

ORBs Buffers

SDU

SDU

SDU

ORBs Buffers

PPDT_r06
September 9, 1999

34

In the preceding figure, the stream data is assumed to be self-descriptive: it may be parsed by its recipient
without the necessity for the ORBs to explicitly mark the SDU boundaries. The stream model may also be
used in conjunction with SDUs that span more than one buffer, as illustrated by Figure 19.

Figure 19 – Transport flow (spanned datagram model)

In the preceding figure, the end_of_message bit is zero in all but the last ORB. Spanned datagrams may
be freely intermixed with the simple datagram model shown by Figure 17.

7.1 Data transfer to a target

Application data is transferred to a target by means of transport flow ORBs whose direction bit is zero.
Within the limits of TASK_SLOTS allocated by the target at the time the connection (identified by the
queue field) was established, the initiator may post more than one such outstanding transport flow ORB to
the task set at a time. ORB fetch latency is reduced if the initiator is permitted to have at least two such
outstanding ORBs in the task set.

The target transport may use read requests that address the data buffer in arbitrary order so long as none
of the data is presented to an application client out of order. Upon successful completion of the data
transfer, the residual field in the status block shall be zero.

The transport flow mode, datagram or stream, established when the connection was created, governs
behavior when the initiator has more data available than the target is capable of processing at one time.
For stream mode, this condition cannot arise; the target transfers data within the limits of local memory,
delivers the data to the application client and continues to transfer data as local memory is released by the
application client. Barring an unrecoverable error in the data transport or application client, all of the data
described by the ORB is eventually transferred.

When datagrams are used, the possibility exists that an SDU is larger than the maximum acceptable to
the target. In this case, no data shall be transferred and the residual field shall indicate the error condition.
Figure 20 shows the relationship between the initiator’s data buffer, the maximum SDU acceptable to the
target and the value of residual. For simplicity, the figure assumes that no page table is used.

Figure 20 – Excess initiator data (datagram model)

SDU

ORBs Buffers

Maximum SDU

residual
(negative)

data_size

PPDT_r06
September 9, 1999

35

The initiator may calculate the target’s maximum acceptable SDU size by adding residual to data_size.

7.2 Data transfer to an initiator

Application data is transferred to an initiator by means of transport flow ORBs whose direction bit is one.
Within the limits of TASK_SLOTS allocated by the target at the time the connection (identified by the
queue field) was established, the initiator may post more than one such outstanding transport flow ORB to
the task set at a time. ORB fetch latency is reduced if the initiator is permitted to have at least two such
outstanding ORBs in the task set.

A target shall report the availability of data for a queue by setting target_data_pending bit to one in all
status blocks stored for that queue’s ORBs, regardless of the value of their direction bit, so long as there
is untransferred data. If the initiator has posted no ORBs for a queue, the target may set attention to one
in the status block for any ORB. This requests the initiator to post a control ORB to transfer queue
information from the target (see 6.5) which in turn causes the initiator to post transport flow ORBs whose
direction bit is one for the queues with available data.

The target transport may use write requests that address the data buffer in arbitrary order so long as
successful completion status is not reported to the initiator until all of the data has been transferred. Upon
successful completion of the data transfer, the residual field in the status block shall be zero.

The transport flow mode, datagram or stream, established when the connection was created, governs
behavior when the target has more data available than the initiator is capable of processing at one time.
For stream mode, this condition cannot arise; the target transfers data (supplied by its application client)
within the limits of the data buffer provided by the initiator; if more data is available from the application
client, the target_data_pending bit shall be one and the target awaits a subsequent ORB for the same
queue whose direction bit is one. Unless an unrecoverable error occurs in the data transport, the target
continues to fill initiator buffers so long as data is available.

When datagrams are used, the possibility exists that an SDU available at the target is larger than data
buffer provided by the initiator. In this case, no data shall be transferred and the residual field shall indicate
the error condition. Figure 21 shows the relationship between the initiator’s data buffer, the SDU available
at the target and the value of residual. Although the figure assumes that no page table is used, the
relationships remain valid if a page table is present— except that the buffer size is summed from the page
table elements instead of being directly available as data-size.

Figure 21 – Excess target data (datagram model)

The initiator may calculate the minimum buffer size necessary to receive the SDU by subtracting residual
from data_size.

7.3 Completion status

The target shall signal completion status for a transport flow ORB by storing a status block to the initiator
status_FIFO active for the login. Unless the buffer is sized incorrectly or a nonrecoverable error occurs,
the target shall transfer all the data specified by the ORB and receive a response subaction of

data_size

residual
(negative)

SDU

PPDT_r06
September 9, 1999

36

resp_complete for each data transfer request subaction before it stores completion status to the initiator
status_FIFO. All pending request subactions for the data transfer specified by the ORB shall be completed
before the target stores a status block for the ORB to the initiator status_FIFO.

Although ANSI NCITS 325-1998 does not constrain targets which implement the unordered execution
model to store completion status in order, this standard requires compliant targets to store completion
status for each queue’s ORBs in order as they are completed. In addition, the initiator shall deliver status
to client applications or services in the same order indicated by the target. If a single event, such as an
aborted task set, causes the initiator to simultaneously complete more than one ORB, the completion
status shall be reported to the client in the same order as the ORBs were signaled to the target.

7.4 Execution context for active ORBs

This document specifies a data transport between services and their application clients that is reliable
across interruptions, such as a bus reset, that cause target task set(s) to be aborted. The data transport is
not only robust in these circumstances, but efficient. Data transfer may be quickly resumed without the
necessity to redundantly move data already stored in or retrieved from an initiator’s buffers. This is
accomplished by cooperation between initiator and target in the use of the signature information field in
transport flow ORBs. The signature field provides a method for the target to recognize an ORB previously
active in an aborted task set.

In order to recognize and correctly resume execution for previously active ORBs, the target shall maintain
context information (a history log) for each active ORB. An ORB is active from the time the target fetches
it and commences data transfer3 up until the time completion status for the ORB is stored at the initiator’s
status_FIFO and either an ack_pending (with a subsequent response of resp_complete) or else an
ack_complete are received by the target.

The exact details of context information maintained by a target are implementation-dependent, but the
context shall be sufficient to correctly resume execution of a previously active ORB if signaled by the
initiator after a task set abort. At a minimum, context information consists of the direction, special and
end_of_message bits and the queue and signature fields for each active ORB as well as the status of data
transfer— in progress or completed successfully or in error. Context information probably includes the
original buffer size (derived from page table entries if a page table is associated with the ORB), the
amount of data already transferred or remaining to be transferred and a pointer to the current location
within the data buffer.

Context information for an active ORB shall be discarded when the target receives a successful
completion response after storing the status block for that ORB at the initiator’s status_FIFO If the target
fails to receive successful completion response, context information for an active ORB shall be discarded
when or when a successful completion response is received after storing a status block for a subsequent
ORB for the same queue. An ORB is subsequent to another if it was signaled by the initiator after the first
ORB.

7.5 Error recovery

All of the events in the following table cause one or more of the target’s task sets to be aborted; see ANSI
NCITS 325-1998 for details. Unless otherwise noted, a target shall preserve execution context for active
ORBs across these events.

3 The exact point in time at which an ORB becomes active is implementation-dependent and consequently difficult to

define. An ORB is not yet active if the same ORB, signaled by an initiator after a bus reset, does not require
context information in order for the target behavior to be essentially the same as if no bus reset had occurred.
Whether or not data has been transferred is often an unreliable measure of an ORB’s active status. For example, if
a printer is designed to accumulate some minimum quantity of data before commencing image transfer to the
medium, and ORB might not be active until print engine started.

PPDT_r06
September 9, 1999

37

Unrecoverable transaction errors may be caused by a missing acknowledgement packet, a split
transaction timeout, a data error or a retry limit exceeded. A missing acknowledgment by itself is not
necessarily an unrecoverable error; the target shall wait a split timeout period before further action. If a
transaction response is received within the split timeout period, there is no error. Otherwise, a split
transaction timeout has occurred. In the case of a data error or a split transaction timeout, if the request
was not addressed to an initiator status_FIFO, target may retry the transaction up to some
implementation-dependent limit. Once the target deems a transaction error unrecoverable, it shall create a
CHECK CONDITION set the resp field in completion status for the faulted ORB to TRANSPORT FAILURE
and transition the fetch agent to the dead state.

When an unrecoverable transaction errors occur for a request that does not address an initiator
status_FIFO, the target should attempt to store status for the faulted ORB before transitioning the fetch
agent to the dead state. This notifies the initiator that error recovery is necessary. If an unrecoverable
transaction error occurs for a write request addressed to an initiator’s status_FIFO, the target shall take no
additional action. It is the initiator’s responsibility to detect such an error, usually by means of a timeout.

After a task set has been aborted, an initiator’s client applications and services may resume data transfer
with the target's services and client applications on a connection by connection queue by queue basis.

Data transfer between a client application and a service may have caused device operations to
commence even if not all the data had been transferred before the task set was aborted. For this reason,
it is essential for each connectionqueue to be resumed by one of two methods. The simplest is to
abandon any operations in progress, flush initiator and target buffers as necessary and return both
endpoints of the connectionqueue to a known state— at which point the abandoned operation(s) may be
reinitiated. The other approach is more efficient and uses execution context for active ORBs to permit
resumption of data transfer at the point at which it was interrupted.

NOTE – A prerequisite to the resumption of data transfer is the existence of a login (the initiator reconnects to
the target if there was a bus reset) and a reset fetch agent (the initiator writes to AGENT_RESET if the target’s
fetch agent had been left in the dead state after the task set was aborted).

7.5.1Resetting a connection

An initiator may implement simple recovery for a queue by signaling an ORB whose signature differs from
those of all ORBs active at the time the task set was aborted by issuing a RESET CONNECTION control

Event AGENT_STATE.st Comment

Unrecoverable
transaction errors

Store status block TRANSPORT FAILURE CHECK
CONDITION for faulted ORB, if possible.

ABORT TASK SET

LOGICAL UNIT RESET

DEAD

Target support for LOGICAL UNIT RESET is optional

Fetch agent reset
(write to AGENT_RESET) RESET

TARGET RESET DEAD

Bus reset For each login, a target shall retain, for at least
reconnect_hold + 1 seconds after the bus reset, sufficient
information to permit initiators to reconnect their logins. After
this time, a target shall discard execution context for the task
set of any initiator that failed to reconnect.

Command reset
(write to RESET_START)

Power reset

RESET

These events are equivalent; execution context for all ORBs
in all task sets shall be discarded. Device operations should
be halted and the device restored to an idle condition.

PPDT_r06
September 9, 1999

38

operation to the target. The connection to be reset shall be identified by the same I2T_QUEUE and
T2I_QUEUE parameters provided by the target when the connection was established. Until the RESET
CONNECTION control operation completes successfully, the initiator shall not signal any ORBs to the
target whose queue field is equal to either the I2T_QUEUE or T2I_QUEUE parameter for the connection.
Once a connection has been reset, ORBs may be signaled on the connection's queue(s) independent of
the status of other connections for the same login.

7.5.2Resynchronizing a connection

Although resetting a connection this method is robust, it may be improved upon. If the client application
and service can reliably resume data transfer from the point it was interrupted, it may be unnecessary to
cancel operations and flush buffers. In order for this method to work, the transport must be able to
recognize resumption of an ORB active at the time the task set was aborted. The signature field in a
transport flow ORB (see 5.1) provides a method by which previously active ORBs may be recognized if
they are resubmitted after a task set abort.

If the initiator elects not to reset the connection queue by signaling an ORB with a fresh signature value as
specified by 7.5.1, data transfer may be safely resumed if initiator and target can identify, for each queue,
the ORB's active at the time the task set was aborted. For a particular queue, an initiator considers an
ORB to be active if no status has been received from the target while a target considers an ORB active
until positive acknowledgment of the receipt of status is signaled by the initiator. When an initiator does not
reset a connection wishes to resume data transfer for a particular queue from the point at which it was
interrupted, it shall perform the following steps for each queue that forms the connection:

a) If there were no active ORBs in the task set for the queue to be resumed whose queue field
identifies one of the queue(s) that form the connection, no action is necessary and the initiator may
resume data transfer for the queueconnection;

b) Otherwise, for each previously active ORB for each of the connection's queue, the initiator shall
signal an equivalent ORB to the target fetch agent. Certain parts of the ORB shall remain
unchanged: the direction, special and end_of_message bits and the queue and signature fields shall
have the same values both before and after the task set abort. The data_descriptor, and data_size
fields and the page_table_present may have different values but they shall describe a buffer of the
same size and whose contents are identical to the buffer described by the ORB at the time it was
aborted. If a bus reset caused the task set to be aborted, the spd and max_payload bits may differ
as a result of a different changed topology between the initiator and target if a bus reset caused the
task set to be aborted. An initiator shall signal equivalent ORBs in the same relative order within a
queue as they had been prior to the task set abort.

NOTE – An initiator might signal equivalent ORBs in the same relative order within a queue as they had been
prior to the task set abort. This straightforward strategy is known to work, but other correct implementations
may be possible.

c) Once all the previously active ORBs for a particular queue have been signaled, the initiator may
signal new ORBs in any order; these shall be interpreted by the target as if they are new; there are
no restrictions on their field values.

When the target fetches an ORB, the action taken depends upon the value of the queue and signature
field, which together uniquely identify an execution context for the initiator. If the value of signature is equal
to the signature of an ORB active for the queue at the time the task set was aborted, the target shall
discard execution context information for any older, previously active ORBs for the same queue. An ORB
is older than another ORB if it was signaled before the other ORB. If the value of the signature field is not
equal to any previously active ORB for the queue, the target shall discard all execution context information
for that queue.

When the signature field identifies execution context for a previously active ORB, the target operations are
determined by the data transfer state at the time the task set was aborted. If the data transfer had

PPDT_r06
September 9, 1999

39

completed, successfully or in error, and completion status had been written to the initiator'’ status_FIFO
(but no response had been received from the initiator), the target simply stores the same completion
status again. The ORB remains active until the conditions specified by X are met. Otherwise, when data
transfer had been in progress, the target shall resume data transfer from the point specified by the
execution context for the ORB.

PPDT_r06
September 9, 1999

41

8 Configuration ROM

All devices compliant with this standard shall implement general format configuration ROM in accordance
with IEEE Std 1394-1995, draft standards IEEE P1394a and IEEE P1212r and the additional requirements
of this document. Targets compliant with this standard shall also conform to the configuration ROM
requirements of ANSI NCITS 325-1998, except as specifically exempted by this document. General
format configuration ROM is a self-descriptive structure; an example appropriate to a target is illustrated
below.

Figure 22 – Example configuration ROM hierarchy

With the exception of the dependent leaf (shown shaded), all of the configuration ROM components
shown above are required for targets compliant with this standard. The connection from the root directory
to the unit directory (shown by a dashed line) is optional; instance directories are the preferred access
routes for unit directories.4

In addition to the requirements of the referenced standards and draft standards, the first five quadlets of
configuration shall conform to the format illustrated by Figure 23.

Figure 23 – First five quadlets of configuration ROM

The bus_info_length field shall have a value of four.

The crc_length field shall have a value of four plus the size, in quadlets, of the root directory. This
indicates that the crc field is calculated for both the bus information block and the root directory— but not
for any of the other configuration ROM data structures. The value of the crc field shall be calculated in
accordance with draft standard IEEE P1212r.

4 ANSI NCITS 325-1998 mandates a Unit_Directory entry in the root directory; this document is noncompliant in that

respect and adheres to the more contemporary recommendations of draft standard IEEE P1212r.

c p

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

node_vendor_ID

crccrc_lengthbus_info_length

cyc_clk_acc generationmax_rec

chip_ID_hi

reserved

chip_ID_lo

m i b

most significant

least significant

max_ROM r link_spd

Bus information
block

Root directory

Instance
directory

Unit
directory

Dependent
leaf

Feature
directory

Keyword
leaf

Master
keyword leaf

PPDT_r06
September 9, 1999

42

The second quadlet shall contain the string “1394” in ASCII characters as specified by draft standard IEEE
P1394a.

The meaning and usage of the irmc, cmc, isc, bmc and pmc bits (abbreviated as m, c, i, b and p,
respectively, in the figure above) and the cyc_clk_acc, max_rec, max_ROM, generation, link_spd,
node_vendor_ID, chip_ID_hi and chip_ID_lo fields are specified by draft standard IEEE P1394a.

The max_rec field shall have a minimum value of five.

The max_ROM field shall have a minimum value of one.

8.1 Root directory

Configuration ROM for devices compliant with this standard shall contain a root directory. The root
directory immediately follows the bus information block and has an address of FFFF F000 041416.
Relevant mandatory and optional entries for the root directory are summarized by the table below; unless
explicitly excluded, any optional root directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

Table 3 – Root directory entries

The Vendor_ID entry shall contain the RAC ID of the vendor that manufactured the device and shall be
immediately followed by a Textual_Descriptor entry that specifies the location of either a textual descriptor
directory or leaf. The referenced textual descriptor leaf or leaves should contain an informal (short) form of
the company name of the vendor.

Directory entry

Name Type Mandatory Description

Vendor_ID I Y 24-bit RAC ID of the vendor that manufactured the
device. This entry shall be immediately followed by
a Textual_Descriptor entry. The addressed textual
descriptor leaf (or leaves, if an intermediate textual
descriptor directory exists) should contain an
informal form of the vendor name easily
recognizable by users.

Node_Capabilities I Y Identifies which options of the CSR architecture
are implemented.

Node_Unique_ID L Although permitted by draft standard IEEE P1212r,
devices compliant with this standard shall not
include a Node_Unique_ID entry in the root
directory.

Keyword_Leaf L Y "Thumbnail" description of the characteristics of
the all instances implemented by the device.

Instance_Directory D Y The instance directories provide a method to group
unit architectures (software protocols) to identify
shared physical components.

Unit_Directory D Unit_Directory entries are applicable only for
targets. The use of Unit_Directory entries in the
root directory is discouraged; designers should
consult draft standard IEEE P1212r for more
information.

PPDT_r06
September 9, 1999

43

A Keyword_Leaf entry is optional within the root directory and, if present, shall specify the location of a
keyword leaf in configuration ROM. The keywords included in the keyword leaf shall be the union of all
keywords from all keyword leaves in the device’s configuration ROM. Simple devices that implement only
one instance may reuse its keyword leaf as the master keyword leaf.

At least one Instance_Directory entry is required in the root directory; each shall specify the location of an
instance directory in configuration ROM.

8.2 Instance directories

Configuration ROM for devices compliant with this standard shall contain one or more instance directories,
each of which describes the function(s) implemented by a particular instantiation within the device. The
mandatory and optional directory entries for an instance directory are specified by draft standard IEEE
P1212r.

All instance directories shall contain a Keyword_Leaf entry.

8.3 Feature directories

All unit directories compliant with the requirements of clause 8.4 shall contain a Feature_Directory entry
that specifies the location of a feature directory whose content and meaning are compliant with this
clause. Configuration ROM may contain feature directories whose content and meaning are specified
either by this standard, another organization or vendor. Relevant mandatory and optional entries for
feature directories compliant with this document are summarized by the table below; unless explicitly
excluded, any optional feature directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

Table 4 – Feature directory entries

The Specifier_ID entry, whose 24-bit immediate value shall be 00 502916, and the Version entry, whose
24-bit immediate value shall be zero, identify this document as the specification of the feature directory.

The Service_ID entry, if present, shall specify the location of a leaf in configuration ROM that contains text
strings, each of which is the service ID of a service implemented by the instance or unit. The format of the
leaf shall be identical to that specified by draft standard IEEE P1212r for keyword leaves.

The Device_ID entry shall specify the location of a textual descriptor leaf in configuration ROM that
contains a device identifying string in the format specified by IEEE Std 1284-1994 clause 6.6.

Directory entry

Name Type Mandatory Description

Specifier_ID I Y 24-bit RAC ID of the directory specifier, 00 502916.

Version I Y In combination with the directory specifier ID, it
identifies the software interface for the unit.

Service_ID L Collection of service ID text strings for all services
implemented for the instance or unit.

Device_ID L Device identifier commonly used for plug and play
device enumeration.

Initiator_Capabilities I Indicates that the instance can function as an
SBP-2 initiator.

PPDT_r06
September 9, 1999

44

8.4 Keyword leaves

Each instance directory shall be characterized by a set of appropriate keywords selected from Table 5 and
placed in a keyword leaf referenced by a Keyword_Leaf entry in the instance directory. Additional
keywords may be present in any keyword leaf, but their meaning and usage are beyond the scope of this
standard. Instances that share exactly the same set of keywords may reference the same keyword leaf.

Table 5 – Recommended keywords

Keyword Recommended usage

CAMERA Captures digital images.

COLOR More than grayscale capabilities are supported, but the
device may operate in a grayscale only mode.

DISK Nonvolatile storage, often rotating.

FAX Implements facsimile protocols commonly used over public
switched telephone networks (PSTN) or integrated services
digital networks (ISDN).

IMAGE Applicable to devices that capture, manipulate or transduce
images.

INITIATOR Identifies the presence of initiator capabilities independently
of target capabilities.

MULTIFUNCTION Indicates the grouping of separate functions (e.g., fax,
printer and scanner) into a single controllable entity.
Superior control may be available if the device is used as
an MFP instead of as its separate functions.

MODEM Data transmission protocols; may be dedicated or public
switched telephone networks (PSTN).

PHOTO Suited to the processing of photographic images.

PRINTER Output device that marks removable media (hardcopy).

SBP-2 Applicable to all devices described by this standard.

SCANNER Captures digital images, usually by means of relative motion
between a sensor and a document.

8.5 Unit directories

Configuration ROM for targets compliant with this standard shall contain one or more unit directories, each
of which specifies a software interface (unit architecture) for a device function. Relevant mandatory and
optional entries for unit directories are summarized by the table below; unless explicitly excluded, any
optional unit directory entries permitted by draft standard IEEE P1212r or ANSI NCITS 325-1998 are also
permitted by this document.

Table 6 – Unit directory entries

Directory entry

Name Type Mandatory Description

Specifier_ID I Y 24-bit RAC ID of the directory specifier.

Version I Y In combination with the directory specifier ID, it
identifies the software interface for the unit.

PPDT_r06
September 9, 1999

45

Directory entry

Name Type Mandatory Description

Command_Set_Spec_ID I Y 24-bit RAC ID of the command set specifier,
00 502916.

Command_Set I Y In combination with the command set specifier ID,
it identifies the command set for the unit.

Management_Agent I Y Provides the address of the SBP-2
MANAGEMENT_AGENT register for login to the
device.

Unit_Characteristics I Y

Logical_Unit_Number I Y

Reconnect_Timeout I Describes the maximum reconnect timeout
supported by a logical unit; a minimum value of ten
seconds is recommended

Feature_Directory D Y Additional information that describes features
(usually independent of the software interface and
command set) of the unit. At least one of the
feature directories shall be specified by this
standard.

The Specifier_ID entry, whose 24-bit immediate value shall be 00 609E16, and the Version entry, whose
24-bit immediate value shall be 01 048316, identify the device as compliant with ANSI NCITS 325-1998,
SBP-2.5

The Command_Set_Spec_ID entry, whose 24-bit immediate value shall be 00 502916, and the
Command_Set entry, whose 24-bit immediate value shall be zero, identify the device as compliant with
this document. The optional Command_Set_Revision entry, if present, shall have a 24-bit immediate value
of zero.

The Unit_Characteristics entry shall specify a vendor-dependent mgt_ORB_timeout and an ORB size of
eight quadlets (32 bytes). Consult ANSI NCITS 325-1998 for details.

Devices compliant with this standard shall contain a single Logical_Unit_Number entry for logical unit zero
in each unit directory. The entry shall specify an unordered execution model (the ordered bit shall be zero).
The device_type field shall be 1F16, unspecified device type.

The Reconnect_Timeout entry is optional, but because connections between client(s) and service(s) are
terminated by a reconnection failure, designers should give careful consideration to a value for
max_reconnect_hold. Omission of this entry sets the default value to one second, which may not be
appropriate for the intended application.

There shall be at least one Feature_Directory entry that specifies the location of a feature directory whose
content and meaning are specified by this standard. There may be additional Feature_Directory entries
that reference feature directories whose content and meaning are specified either by this standard,
another organization or vendor.

5 The names given are those used by draft standard IEEE P1212r; they correspond to the names Unit_Spec_ID and

Unit_SW_Version, respectively, in both ISO/IEC 13213:1994 and ANSI NCITS 325-1998.

PPDT_r06
September 9, 1999

46

8.6 Device ID

IEEE Std 1284-1994 specifies the syntax of a device identifying string which contains the device's vendor
and model. Although the Vendor_ID and Model_ID entries defined by IEEE P1212r express equivalent
information, PPDT devices may also include a device ID string in their configuration ROM. This clause
specifies a uniform method for the inclusion of such a string.

The device ID string, if present, shall be a textual descriptor associated with the Logical_Unit_Number
entry in a unit directory. The width, character_set and language fields in the textual descriptor shall be
zero. The format of the text string shall be as specified by IEEE Std 1284-1994 clause 7.6, except that it
shall not commence with two bytes of length.6 The text string shall include the MANUFACTURER,
MODEL, CLASS and COMMAND SET fields (which may be abbreviated in the text string as MFG, MDL,
CLS and CMD respectively).

Multifunction devices shall identify their supported functions via multiple values assigned to the CLASS
field. If characteristics of a particular function, e.g., the command set, differ from other functions, the
CLASSINFO field (which may be abbreviated in the text string as CLI) may be used to associate fields
with a particular function. The CLASSINFO field is an extension, created by this standard, to the fields
defined by IEEE Std 1284-1994. The syntax of the CLASSINFO field is CLI:value; where value shall be a
function class specified by the CLS field. All fields that follow a CLI field pertain to the class identified by
value until the next CLI field in the device ID string.

6 The length, in bytes, of a textual descriptor's text string may be calculated by subtracting the number of trailing pad

(null) characters from 4 * descriptor_length.

PPDT_r06
September 9, 1999

47

Annex A
(normative)

Minimum Serial Bus node capabilities

In addition to the minimum capabilities defined by IEEE Std 1394-1995, ANSI NCITS 325-1998 and draft
standard IEEE P1394a, this annex specifies other capabilities or restrictions mandated by this standard.

A.1 Initiator capabilities

With the exception of configuration ROM and control and status registers, an initiator shall be capable of
responding to block read or write requests with a data_length less than or equal to 64 bytes.

An initiator shall also be capable of responding to block read requests with a data_length less than or
equal to 4 * ORB_size, where ORB_size is obtained from the Unit_Characteristics entry in the target's
configuration ROM.

For the largest value of max_payload specified in any command block ORB it signals to the target, an
initiator shall be capable of responding to block read and write requests with a data_length less than or
equal to 2 max_payload + 2 bytes.

An initiator shall report the largest of these possible data_length values by setting the value of the
max_rec field in the bus information block in its configuration ROM to a value equal to or greater than (log2
data_length) - 1.

A.2 Target capabilities

A target shall be capable of responding to block read or write requests with a data_length equal to eight
bytes if the destination_offset specifies either the MANAGEMENT_AGENT or the ORB_POINTER
register.

A target shall be capable of initiating write requests and shall report this by setting the drq bit in the
Node_Capabilities entry in configuration ROM to one. Consequently, targets shall implement the dreq bit in
the STATE_CLEAR and STATE_SET registers. The value of STATE_CLEAR.dreq shall be unaffected by a
Serial Bus reset. Targets may automatically set dreq to zero (request initiation enabled) upon a power
reset or a command reset.

A target shall be capable of initiating block write requests with a data_length of at least 16 bytes.

While initializing after a power reset, a target shall respond to quadlet read requests addressed to
FFFF F000 040016 with either a response data value of zero or acknowledge the request subaction with
ack_tardy, as specified by draft standard IEEE P1394a. This indicates that the remainder of configuration
ROM, as well as other target CSRs, are not accessible.

Targets shall support management request functions addressed to the MANAGEMENT_AGENT register
as specified by the table below.

PPDT_r06
September 9, 1999

48

function Support Description

0 Mandatory LOGIN

1 Mandatory QUERY LOGINS

2 — Reserved for future standardization

3 Mandatory RECONNECT

4 Optional SET PASSWORD (see ANSI NCITS
325-1998 Annex C)

5 – 6 — Reserved for future standardization

7 Mandatory LOGOUT

8 – A16 — Reserved for future standardization

B16 Not supported ABORT TASK

C16 Mandatory ABORT TASK SET

D16 — Reserved for future standardization

E16 Not supported LOGICAL UNIT RESET

F16 Mandatory TARGET RESET

PPDT_r06
September 9, 1999

49

Annex B
(normative)

Compliance with ANSI NCITS 325-1998

Subsequent to the approval of SBP-2 as an American National Standard, the IEEE P1212r working group
commenced a revision of the CSR Architecture. This image peer-to-peer data transport protocol, based
upon SBP-2, conforms to the more recent recommendations and requirements of draft standard IEEE
P1212r, some of which conflict with normative requirements of ANSI NCITS 325-1998. This annex lists the
points of divergence as well as areas for which this standard specifies SBP-2 implementation constraints
not required by ANSI NCITS 325-1998.

B.1 Divergences from ANSI NCITS 325-1998

EDITOR's NOTE – This is a group action item; it awaits careful review of both this draft and SBP-2 to identify
points of divergence. This review is necessary before this draft goes to ballot.

B.2 Implementation constraints in addition to ANSI NCITS 325-1998

An initiator shall signal ORBs to targets in the same order as they are presented by its application clients
and services. An initiator shall report completion status to its application clients and services in the same
order as the status block(s) are written to the initiator’s status_FIFO. These additional requirements are
necessary to permit the ordered execution of ORBs within a single queue even though the target reports
that it implements the SBP-2 unordered execution model in its configuration ROM.

If an event, such as the abortion of a task set, causes more than one ORB to simultaneously complete, an
initiator shall report completion status to its application clients and services in the same order as which the
ORBs were signaled to the target.

An initiator shall either permit its application clients and services to control the value of the notify bit for
individual ORBs or shall set the notify bit to one for all ORBs.

PPDT_r06
September 9, 1999

51

Annex C
(normative)

Control request and response parameters

The table below provides a quick reference to the parameters associated with particular control requests
and responses; consult section 6 for details for a particular request or response. Optional parameters are
shown by parentheses; the last column indicates whether or not the response information may be sent
autonomously.

7 At least one queue ID parameter shall be present, either I2T_QUEUE or T2I_QUEUE, and both may be present. In

the latter case the two queue ID parameters may identify different queues or the same queue.
8 The queue ID parameter(s) shall be the same originally provided by the target when the connection was

established.

ctrl_function Name Requester
Request

parameters
Response

parameters
Autonomous

response

Initiator
SERVICE_ID

MODE
(TASK_SLOTS)

Queue ID(s)7

TASK_SLOTS No

1 CONNECT

Target

Queue ID(s)3

SERVICE_ID
MODE

 TASK_SLOTS

(TASK_SLOTS) No

2 SHUTDOWN
QUEUE — Queue ID No response allowed

3 RESET
CONNECTION Initiator Queue ID(s)8 — No

4 SERVICE
DIRECTORY — — SERVICE_ID(s) Permitted

5 STATUS Initiator — QUEUE_INFO Target only

PPDT_r06
September 9, 1999

53

Annex D
(normative)

Control and status registers

The control and status registers (CSRs) implemented by a target shall conform to the requirements
defined by this standard and its normative references. The CSRs may be arranged in three principal
categories:

– core registers defined by draft standard IEEE P1212r and required by either that standard or this
document;

– bus-dependent registers required by IEEE Std 1394-1995; and

– unit architecture registers required by ANSI NCITS 325.1998.

The relevant standard shall be consulted for details of register definition and usage; the table below
provides a quick reference that summarizes all CSRs used by this document. Except for the optional
MESSAGE_REQUEST and MESSAGE_RESPONSE registers, all of the CSRs are mandatory.

Offset Register name Description

0 STATE_CLEAR State and control information

4 STATE_SET Sets STATE_CLEAR bits

8 NODE_IDS Contains the 16-bit node_ID value used to
address the node

C16 RESET_START Resets the node’s state

1816 – 1C16 SPLIT_TIMEOUT Time limit for split transactions

8016 – BC16 MESSAGE_REQUEST Message area for target requests when no
login exists

C016 – FC16 MESSAGE_RESPONSE Message area for initiator responses to
target requests addressed to
MESSAGE_REQUEST.

21016 BUSY_TIMEOUT Controls transaction layer retry protocols

specified by
configuration ROM

MANAGEMENT_AGENT Login and other SBP-2 task management
requests

AGENT_STATE Reports SBP-2 fetch agent state

AGENT_RESET Resets SBP-2 fetch agent

ORB_POINTER Address of current ORB

DOORBELL Signals SBP-2 fetch agent to refetch an
address pointer

specified by login
response data

UNSOLICITED_STATUS_ENABLE Acknowledges the SBP-2 initiator’s receipt
of unsolicited status

PPDT_r06
September 9, 1999

55

Annex E
(informative)

Configuration ROM

Configuration ROM is located at a base address of FFFF F000 040016 within a node’s address space. The
requirements for general format configuration ROM for devices compliant with this standard are specified
in section 0. This annex contains illustrations of typical configuration ROM for a variety of devices.

E.1 Bus information block and root directory

Figure E–1 below shows a typical bus information block, root directory and textual descriptor leaves for
devices compliant with this standard. Not shown are the instance, feature and unit directories themselves;
these may vary according to the complexity of the device and its supported software interfaces. Consult
other clauses in this annex for examples of printers, scanners and other (multifunction) devices.

Figure E–1 – Example bus information block and root directory

The CRC in the first quadlet is calculated on following nine quadlets of configuration ROM, the bus
information block and the root directory. Devices should not include all of configuration ROM within the
coverage provided by this CRC; the other directories and leaves each contain their own CRC.

The node_options field represents a collection of bits and fields specified draft standard IEEE P1212r. The
value shown, 00FF 601216, represents basic characteristics of a device that is not isochronous capable.

5859 5A0016 (ASCII “XYZ “)

vendor_ID0316

3133 393416 (ASCII “1394”)

node_options (00FF 601216)

chip_ID_lo

node_vendor_ID chip_ID_hi

4 9

4 Root directory CRC (calculated)

CRC (calculated)
most significant

least significant

node_capabilities (00 83C016)

Instance directory offset

0C16

D816

3 Text leaf CRC (calculated)

Text descriptor leaf offset (3)8116

0 specifier_ID (0)

language (0)character_set (0)width (0)

PPDT_r06
September 9, 1999

56

This value is composed of a cyc_clk_acc field with a value of FF16, a max_rec value of six, a max_ROM
value of one and a link_spd value of two. The max_rec field encodes a maximum payload of 64 bytes in
block write requests addressed to the target.

The Node_Capabilities entry in the root directory, with a key field of 0C16, has a value where the spt, 64,
fix, lst and drq bits are all one. This is a minimum requirement for devices compliant with this standard.

The Vendor_ID entry in the root directory, with a key field of 0316, is immediately followed by a textual
descriptor leaf entry, with a key field of 8116, whose indirect_offset value points to a leaf that contains an
ASCII string that identifies the vendor (the XYZ company). Although the textual descriptor leaf utilizes
minimal ASCII, a permissible variant might include a textual descriptor directory in order to provide
multiple language support.

The Instance_Directory entry in the root directory, with a key field of D816, is the starting point for device
discovery (enumeration) software to search configuration ROM for particular function instances.

E.2 Feature directory

Devices compliant with this standard implement a feature directory for each instance. An example of a
feature directory, with its associated service ID and device ID leaves is illustrated by Figure E–2. Except
for these generic features, additional content of the feature directory is device-dependent; see 8.3 for
more details on the other directory entries that may be present.

Figure E–2 – Feature directory with service ID and device ID leaves

The Specifier_ID and Version entries, with a key field of 1216 and 1316, respectively, indicate that the
format of the unit directory is specified by this document.

The Service_ID entry, with a key field of B016, points to the service ID leaf, which is in the same format as
keyword leaves. The service ID leaf specifies a hypothetical service identified as "SVC".

1 Service ID leaf CRC (calculated)

4 Feature directory CRC (calculated)
most significant

least significant

Device ID leaf offset (2)

version

specifier_ID (00 502916)1216

1316

Service ID leaf offset (1)B016

B116

53 564316 (ASCII "SVC")

5151 515116 (ASCII “QQQQ”)

3 Text leaf CRC (calculated)

spec_type (0) specifier_ID (0)

language_ID (0)

0

PPDT_r06
September 9, 1999

57

The Device_ID entry, with a key field of B116, points to a textual descriptor leaf that contains an ASCII
string that identifies the device to bus enumeration software.

E.3 Unit directory

Targets compliant with this standard implement at least one unit directory in the format illustrated by
Figure E–3. Devices that support more than one software protocol (unit architecture) may implement
additional unit directories whose format is specified by other documents.

Figure E–3 – Unit directory for peer-to-peer data transport (PPDT) protocol target

The Specifier_ID and Version entries, with a key field of 1216 and 1316, respectively, indicate that the
format of the unit directory is specified by ANSI NCITS 325-1998.

The Command_Set_Spec_ID and Command_Set entries, with key fields of 3816 and 3916, respectively,
indicate that the target use the peer-to-peer data transport (PPDT) protocol specified by this document..

The Management_Agent entry in the unit directory, with a key field of 5416, has a csr_offset value of
00 400016 that indicates that the management agent CSR has a base address of FFFF F001 000016 within
the node’s memory space.

The Unit_Characteristics entry in the unit directory, with a key field of 3A16, has an immediate value of
00 0A0816. This indicates a target that is expected to complete task management requests (including
login) within five seconds and fetches 32-byte ORB’s.

The Logical_Unit_Number entry in the unit directory, with a key field of 1416, has an immediate value of
zero that indicates a device that may reorder tasks without restriction and has a logical unit number of
zero.

At least one Feature_Directory entry is present; it addresses the same feature directory as the parent
instance directory for this unit. See Figure E–2 for an example of a typical feature directory.

9A16 Feature directory offset

3 Unit directory CRC (calculated)

Device type and LUN (0)

Unit characteristics (00 0A0816)

most significant

least significant

command_set (xx xxxx16)

version (01 048316)

3A16

5416 csr_offset (00 400016)

specifier_ID (00 609E16)1216

1316

1416

command_set_spec_ID (00 502916)3816

3916

PPDT_r06
September 9, 1999

58

E.4 Scanner with a single unit architecture

The configuration ROM for a simple device, such as a scanner, that implements only one software
protocol (unit architecture) utilizes the bus information block and root directory structure already described
in Figure E–1. An example instance directory and its associated keyword leaf is illustrated by Figure E–4.

Figure E–4 – Instance directory and keyword leaf for a scanner

The Keyword_Leaf entry, with a key value of 9916, points to a keyword leaf that contains the keywords
COLOR and SCANNER.

Since this is a simple device that supports a single software protocol (unit architecture), there is only one
Unit_Directory entry, with a key value of D116, in the instance directory.

E.5 Printer with multiple unit architectures

The configuration ROM for a more complex device, such as a printer that implements more than one
software protocol (unit architecture) also utilizes the bus information block and root directory structure
already described in Figure E–1. An example instance directory and its associated keyword leaf is
illustrated by Figure E–5.

3 Instance directory CRC (calculated)
most significant

least significant

Keyword leaf CRC (calculated)

Feature directory offset

Keyword leaf offset (2)9916

DA16

Unit directory offsetD116

4

4316 ("C") 4F16 ("O") 4C16 ("L") 4F16 ("O")

5216 ("R") 0 5316 ("S") 4316 ("C")

4116 ("A") 4E16 ("N") 4E16 ("N") 4516 ("E")

5216 ("R") 0 0

PPDT_r06
September 9, 1999

59

Figure E–5 – Instance directory and keyword leaf for a multiple protocol printer

The Keyword_Leaf entry, with a key value of 9916, points to a keyword leaf that contains the keywords
PHOTO, PRINTER, DPP and SBP-2.

Since this is target supports multiple software protocols (unit architectures) for the same physical instance
of the print engine, there are two Unit_Directory entries in the instance directory, one that references a unit
directory compliant with this standard and one that references a Direct Print Protocol (DPP) unit directory.

E.6 Multifunction device with uniform unit architectures

EDITOR's NOTE – Has the 1394 PWG reached consensus as to what this example should show— or even if it
will be intelligible to the average reader?

5016 ("P") 2D16 ("-") 3216 ("2") 0

Keyword leaf CRC (calculated)6

5016 ("P") 4816 ("H") 4F16 ("O") 5416 ("T")

4F16 ("O") 0 5016 ("P") 5216 ("R")

4916 ("I") 4E16 ("N") 5416 ("T") 4516 ("E")

5216 ("R") 0 4416 ("D") 5016 ("P")

5016 ("P") 0 5316 ("S") 4216 ("B")

4 Instance directory CRC (calculated)
most significant

least significant

Feature directory offset

Keyword leaf offset9916

DA16

Unit directory offset (PPDT protocol)D116

Unit directory offset (DPP)D116

