Requirements For Printing Protocols from Nashua

- Access Control
 - Fair Access
 - Determine How Many Logins
- In Order Data Delivery
- Flow Control
- Guaranted Delivery
 - Error Detection
 - Correction/Recovery
- Multiple Independant Channels
- Single Channel is Bi-Directional
- PDL, Application, OS Independent
- Standard Will Allow Concurrent Operation of Multiple Protocols

- Access Control -
 - Login
 - ► Password in Login
 - Fair Access
 - Not explicitly part of SBP-2
 - Determine How Many Logins
 - ► Login_query & Login_query_response returns max_logins. Since managment ORB login not required to determine max_logins
- In Order Data Delivery
 - Not explicit. PWG Device Profile could require In Order ORB processing.

- Flow Control
 - Implicit. Target Fetch Agent controls data flow.
- Guaranted Delivery
 - 1394 Asynchronous transmission is guaranted using ACKnowledged data transfer.
 - Error Detection
 - ► CRC error and SBP-2 status block.
 - Correction/Recovery
 - Basic mechanisim is to re-fetch

Can Learn About Error Detection and Recovery from Work Being Done on OHCI

- Single Channel is Bi-Directional
 - Yes... Sort Of. Half Duplex. Direction bit in the Command ORB. Not truely bi-directional communication path. Transport is assymetrical, optimized for well bounded mass storage data transfers.
- Multiple Independant Channels
 - No. Fetch Engine is really only 1 Channel lack of True bi-directional complicates this.
- PDL, Application, OS Independent
 - Yes. Data format Independant.

- Standard Will Allow Concurrent Opertion of Multiple Protocols.
 - SBP-2 Does not Prevent it. Function Discovery Should be Defined to Allow it

• Is Well Defined Job Boundaries a Requirement?

- SBP-2 is an efficiant transport protocol and is optimized for 1394 DMA shared memory access.
- Lack of a true bi-directional communication path makes it difficult to adapt to multiple independant logical channels.
 - Could use Dual Login "Targiator", one fetch agent in Initiator and one in Target?
 - Multiple Target Fetch agents?

Is there an appropriate alternative?

Another Idea

Inititiator

Target

Outbound Queue

Outbound Queue

Data_FIFO_Address

Data_FIFO_Address

Queue Entries are 1394 Payload MTU_size

Another Idea - Pros & Cons 1394 P

- + Borrowed From IP1394
- + Sort of FCP like
- + True Bi-directional Communication
- + Efficiant 1394 Unified Block Write Transactions
- + Simple, Easy To Explain and Speciffy
- Does Not Take Advantage of 1394 Shared Memory
- Do Packets Need Additional Header Info? If so could have higher header to playload overhead Vs. SBP-2 ORB to payload overhead.
- Now Need Flow Control.

✓ Could Actually Still Fetch If You Really Wanted To?

Another Idea Continued

- Retain SBP-2 "Style" Features We Like
 - LoginMethod
 - Login Query
 - Reconnect Method
- Use 1284.4 style CBT Scheme?

What About A Hybred?

