
CONGRUENT SOFTWARE, INC.
98 Colorado Avenue
Berkeley, CA  94707
(510) 527-3926
(510) 527-3856 FAX

FROM: Peter Johansson

TO: 1394 Printer Working Group

DATE: February 25, 1999

RE: Merged documents for proposed draft
                                                                                                                                  

The draft that follows is an attempt to merge many of the contributions made to the 1394
PWG to date and to place them in a form close to an eventual standards document. It also
reflects some useful “brainstorming” that has occurred in private. Since this document has
no historical obligation to its antecedents, I have taken the liberty of introducing the new
concepts in one piece, without any attempt to provide a delta between this draft and earlier
1394 PWG discussions.

The document is also incomplete; courtesy of a rather lengthy flight from the Bay area to
Miami I expect to confront you all with a fresh revision Monday morning.





i

Contents
Page

1 Scope and purpose..............................................................................................1
1.1 Scope ............................................................................................................1
1.2 Purpose.........................................................................................................1

2 Normative references ..........................................................................................3
2.1 Approved references.....................................................................................3
2.2 References under development ....................................................................3

3 Definitions and notation .......................................................................................5
3.1 Definitions .....................................................................................................5

3.1.1 Conformance..........................................................................................5
3.1.2 Glossary .................................................................................................5
3.1.3 Abbreviations..........................................................................................7

3.2 Notation.........................................................................................................8
3.2.1 Numeric values.......................................................................................8
3.2.2 Bit, byte and quadlet ordering.................................................................8

4 Model (informative) ............................................................................................11
4.1 Protocol stack and service model ...............................................................11
4.2 Independent data paths for each service ....................................................12
4.3 Connection management ............................................................................13
4.4 Data transfer between initiator and target ...................................................13
4.5 Control requests and responses .................................................................13
4.6 Unsolicited status ........................................................................................13

5 Data structures ..................................................................................................15
5.1 Transport flow ORBs...................................................................................15
5.2 Control information......................................................................................16
5.3 Status block.................................................................................................19

6 Control and status registers...............................................................................21

7 Configuration ROM ............................................................................................23
7.1 Root directory ..............................................................................................24
7.2 Instance directories .....................................................................................25
7.3 Feature directories ......................................................................................25
7.4 Keyword leaves ...........................................................................................26
7.5 Unit directories ............................................................................................26

8 Control operations..............................................................................................29
8.1 Login and queue zero..................................................................................29
8.2 Autonomous response information .............................................................30
8.3 Service discovery ........................................................................................31
8.4 Connection management ............................................................................31

8.4.1 Connection establishment ....................................................................31
8.4.2 Disconnection .......................................................................................31

8.5 Queue status information............................................................................31

9 Transport flow operations ..................................................................................33
9.1 Data transfer to a target ..............................................................................33
9.2 Data transfer to an initiator..........................................................................33
9.3 Completion status .......................................................................................33
9.4 Error recovery..............................................................................................33



ii

9.5 Bus reset .....................................................................................................33

Tables

Table 1 – Parameter ID values .............................................................................18
Table 2 – Root directory entries ............................................................................24
Table 3 – Feature directory entries .......................................................................25
Table 4 – Unit directory entries .............................................................................27

Figures

Figure 1 – Bit ordering within a byte........................................................................8
Figure 2 – Byte ordering within a quadlet................................................................9
Figure 3 – Quadlet ordering within an octlet ...........................................................9
Figure 4 – Protocol stack (service at target) .........................................................11
Figure 5 – Protocol stack (service at initiator).......................................................11
Figure 6 – Multiplexed queues in an SBP-2 task set ............................................12
Figure 7 – Independent queues (logical model) ...................................................12
Figure 8 – Transport flow ORB .............................................................................15
Figure 9 – Control information format...................................................................16
Figure 10 – Immediate parameter format .............................................................18
Figure 11 – Variable-length parameter format ......................................................18
Figure 12 – Status block format............................................................................19
Figure 13 – Example configuration ROM hierarchy..............................................23
Figure 14 – First five quadlets of configuration ROM ...........................................23
Figure C-1 – Example bus information block and root directory...........................39

Annexes

Annex A (normative)  Minimum Serial Bus node capabilities ...............................35

Annex B (normative)  Control request and response parameters ........................37

Annex C (informative)  Configuration ROM ..........................................................39



1

1 Scope and purpose

1.1 Scope

1.2 Purpose





3

2 Normative references

The standards named in this section contain provisions which, through reference in this text, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision; parties to agreements based on this standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below.

Copies of the following documents can be obtained from ANSI:

Approved ANSI standards;

Approved and draft regional and international standards (ISO, IEC, CEN/CENELEC and ITUT); and

Approved and draft foreign standards (including BIS, JIS and DIN).

For further information, contact the ANSI Customer Service Department by telephone at (212) 642-4900,
by FAX at (212) 302-1286 or via the world wide web at http://www.ansi.org.

Additional contact information for document availability is provided below as needed.

2.1 Approved references

The following approved ANSI, international and regional standards (ISO, IEC, CEN/CENELEC and ITUT)
may be obtained from the international and regional organizations that control them.

ANSI NCITS.325-1998, American National Standard for Information Systems—Serial Bus Protocol 2
(SBP-2)

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 9899:1990, Programming Languages—C

2.2 References under development

At the time of publication, the following referenced standards were still under development.

IEEE P1212r, Draft Standard for a Control and Status Register (CSR) Architecture for Microcomputer
Buses

IEEE P1394a, Draft Standard for a High Performance Serial Bus (Supplement)





5

3 Definitions and notation

3.1 Definitions

3.1.1 Conformance

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1.1  expected: A keyword used to describe the behavior of the hardware or software in the design
models assumed by this standard. Other hardware and software design models may also be
implemented.

3.1.1.2  ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not
checked by the recipient.

3.1.1.3  may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4  reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the
code values assigned to these objects in cases where either the object or the code value is set aside for
future standardization. Usage and interpretation may be specified by future extensions to this or other
standards. A reserved object shall be zeroed or, upon development of a future standard, set to a value
specified by such a standard. The recipient of a reserved object shall not check its value. The recipient of
an object defined by this standard as other than reserved shall check its value and reject reserved code
values.

3.1.1.5  shall: A keyword that indicates a mandatory requirement. Designers are required to implement all
such mandatory requirements to assure interoperability with other products conforming to this standard.

3.1.1.6  should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “is recommended.”

3.1.2 Glossary

The following terms are used in this standard:

3.1.2.1  byte: Eight bits of data.

3.1.2.2  connection: A queue or a pair of queue(s) that affords access to a service.

3.1.2.3  function: A capability of the device expressed as a unit architecture (unit directory) with a single
logical unit (LU zero).

3.1.2.4  initiator: A node that originates device service or management requests and signals these
requests to a target for processing.

3.1.2.5  initiator control request ORB: An ORB whose queue field and direction bit are zero, whose
control and end_of_message bits are one and whose buffer contains control information with the rq bit set
to one.

3.1.2.6  initiator control response ORB: An ORB whose queue field and direction bit are zero, whose
control and end_of_message bits are one and whose buffer contains control information with the rq bit
zeroed.



6

3.1.2.7  logical unit: The part of the unit architecture that provides access to one or more services.
Devices compliant with this standard implement one logical unit with a LUN of zero.

3.1.2.8  login: The process by which an initiator obtains access to a target fetch agent. The target fetch
agent and its control and status registers provide a mechanism for an initiator to signal ORBs to the target.

3.1.2.9  node: An addressable device attached to Serial Bus.

3.1.2.10  octlet: Eight bytes, or 64 bits, of data.

3.1.2.11  operation request block: A data structure fetched from system memory by a target in order to
execute the request encapsulated within it.

3.1.2.12  quadlet: Four bytes, or 32 bits, of data.

3.1.2.13  queue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set.

3.1.2.14  receive: When any form of this verb is used in the context of Serial Bus primary packets, it
indicates that the packet is made available to the transaction or application layers, i.e., layers above the
link layer. Neither a packet repeated by the PHY nor a packet examined by the link is "received" by the
node unless the preceding is also true.

3.1.2.15  register: A term used to describe quadlet-aligned addresses that may be read or written by Serial
Bus transactions. In the context of this standard, the use of the term register does not imply a specific
hardware implementation. For example, in the case of split transactions that permit sufficient time
between the request and response subactions, the behavior of the register may be emulated by a
processor.

3.1.2.16  request subaction: A packet transmitted by a node (the requester) that communicates a
transaction code and optional data to another node (the responder) or nodes.

3.1.2.17  response subaction: A packet transmitted by a node (the responder) that communicates a
response code and optional data to another node (the requester). A response subaction may consist of
either an acknowledge packet or a response packet.

3.1.2.18  service: A protocol used to control an independently operable component of a function.

3.1.2.19  split transaction: A transaction that consists of a request subaction followed by a separate
response subaction. Subactions are considered separate if ownership of the bus is relinquished between
the two.

3.1.2.20  status block: A data structure which may be written to system memory by a target when an
operation request block has been completed.

3.1.2.21  store: When any form of this verb is used in the context of data transferred by the target to the
system memory of either an initiator or other device, it indicates both the use of Serial Bus write request
subaction(s), quadlet or block, to place the data in system memory and the corresponding response
subaction(s) that complete the write(s).

3.1.2.22  system memory: The portions of any node’s memory that are directly addressable by a Serial
Bus address and which accepts, at a minimum, quadlet read and write access. Computers are the most
common example of nodes that might make system memory addressable from Serial Bus, but any node,
including those usually thought of as peripheral devices, may have system memory.



7

3.1.2.23  target: A node that receives device service or management requests from an initiator. In the case
of control operation or transport flow requests, the ORBs are directed to the target’s logical unit zero to be
executed. Management requests are serviced by the target. A CSR Architecture unit is synonymous with a
target.

3.1.2.24  target control request ORB: An ORB whose queue field is zero, whose direction, control and
end_of_message bits are one and whose buffer contains control information with the rq bit set to one.

3.1.2.25  target control response ORB: An ORB whose queue field is zero, whose direction, control and
end_of_message bits are one and whose buffer contains control information with the rq bit zeroed.

3.1.2.26  task: A task is an organizing concept that represents the work to be done by a target to carry out
a command encapsulated by an ORB. In order to perform a task, a target maintains context information
for the task, which includes (but is not limited to) the command, parameters such as data transfer
addresses and lengths, completion status and ordering relationships to other tasks. A task has a lifetime,
which commences when the task is entered into the target’s task set, proceeds through a period of
execution by the target and finishes either when completion status is stored at the initiator or when
completion may be deduced from other information. While a task is active, it makes use of both target
resources and initiator resources.

3.1.2.27  task set: A group of tasks available for execution by a logical unit of a target. ANSI
NCTIS.325-1998 specifies some dependencies between individual tasks within the task set and this
standard mandates others.

3.1.2.28  transaction: A Serial Bus request subaction and the corresponding response subaction. The
request subaction transmits a transaction code (such as quadlet read, block write or lock); some request
subactions include data as well as transaction codes. The response subaction is null for transactions with
broadcast destination addresses or broadcast transaction codes; otherwise it returns completion status
and possibly data.

3.1.2.29  unit: A component of a Serial Bus node that provides processing, memory, I/O or some other
functionality. Once the node is initialized, the unit provides a CSR interface that is typically accessed by
device driver software at an initiator. A node may have multiple units, which normally operate
independently of each other. Within this standard, a unit is equivalent to a target.

3.1.2.30  unit architecture: The specification of the interface to and the services provided by a unit
implemented within a Serial Bus node. This standard is a unit architecture for image devices (e.g.,
printers, scanners or multifunction peripherals) intended to be used with the unit architecture for SBP-2
targets.

3.1.2.31  unit attention: A state that a logical unit maintains while it has unsolicited status information to
report to one or more logged-in initiators. A unit attention condition shall be created as described
elsewhere in this standard or in the applicable command set- and device-dependent documents. A unit
attention condition shall persist for a logged-in initiator until a) unsolicited status that reports the unit
attention condition is successfully stored at the initiator or b) the initiator’s login becomes invalid or is
released. Logical units may queue unit attention conditions; after the first unit attention condition is
cleared, another unit attention condition may exist.

3.1.2.32  working set: The part of a task set that has been fetched from the initiator by the target and is
available to the target in its local storage.

3.1.3 Abbreviations

The following are abbreviations that are used in this standard:



8

CSR Control and status register

CRC Cyclical redundancy checksum

EUI-64 Extended Unique Identifier, 64-bits

LUN Logical unit number

ORB Operation request block

SBP-2 ANSI NCITS.325-1998

3.2 Notation

The following conventions should be understood by the reader in order to comprehend this standard.

3.2.1 Numeric values

Decimal and hexadecimal numbers are used within this standard. By editorial convention, decimal
numbers are most frequently used to represent quantities or counts. Addresses are uniformly represented
by hexadecimal numbers, which are also used when the value represented has an underlying structure
that is more apparent in a hexadecimal format than in a decimal format.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names.
Hexadecimal numbers are represented by digits from the character set 0 – 9 and A – F followed by the
subscript 16. When the subscript is unnecessary to disambiguate the base of the number it may be
omitted. For the sake of legibility, hexadecimal numbers are separated into groups of four digits separated
by spaces.

As an example, 42 and 2A16 both represent the same numeric value.

3.2.2 Bit, byte and quadlet ordering

Devices compliant with this standard use the facilities of Serial Bus, IEEE Std 1394-1995; therefore this
standard uses the ordering conventions of Serial Bus in the representation of data structures. In order to
promote interoperability with memory buses that may have different ordering conventions, this standard
defines the order and significance of bits within bytes, bytes within quadlets and quadlets within octlets in
terms of their relative position and not their physically addressed position.

Within a byte, the most significant bit, msb, is that which is transmitted first and the least significant bit,
lsb, is that which is transmitted last on Serial Bus, as illustrated below. The significance of the interior bits
uniformly decreases in progression from msb to lsb.

Figure 1 – Bit ordering within a byte

Within a quadlet, the most significant byte is that which is transmitted first and the least significant byte is
that which is transmitted last on Serial Bus, as shown below.

lsbmsb
most significant least significant

interior bits (decreasing significance left to right)



9

Figure 2 – Byte ordering within a quadlet

Within an octlet, which is frequently used to contain 64-bit Serial Bus addresses, the most significant
quadlet is that which is transmitted first and the least significant quadlet is that which is transmitted last on
Serial Bus, as the figure below indicates.

Figure 3 – Quadlet ordering within an octlet

When block transfers take place that are not quadlet aligned or not an integral number of quadlets. No
assumptions can be made about the ordering (significance within a quadlet) of bytes at the unaligned
beginning or fractional quadlet end of such a block transfer, unless an application has knowledge (outside
of the scope of this standard) of the ordering conventions of the other bus.

most significant quadlet

least significant quadlet

next to
least significant byte

second
most significant byte

most significant least significant

most significant byte least significant byte

most significant

least significant





11

4 Model (informative)

This section is informative and describes imaging devices that conform to this document and its normative
references. It is intended to enhance the usefulness of the other, normative parts of the document. In
addition to the information in this clause, users of this document should also be familiar with the CSR
architecture, Serial Bus standards and the SBP-2 standard.

Examples of imaging devices that come within the scope of this profile include (but are not limited to)
copiers, printers, facsimile machines, scanners and multi-function peripherals that combine two or more of
these capabilities. These devices are characterized by high-volume transfers of application data; modest
amounts of control information may be communicated in parallel with the application data transfers. These
devices are used with diverse operating systems and application protocols; consequently any standard for
their use with Serial Bus needs to hide many of the transport protocol details from the user applications.
For example, a print driver that supports Postscript data formats should not be concerned with how data
and control information are transported between it and the printer. This document resolves those
concerns.

4.1 Protocol stack and service model

The relationship between the initiator and target may be modeled as a software stack present in both
devices, as shown by Figure 4 and Figure 5 below. The physical interconnection, via Serial Bus, exists at
the lowest protocol level. This document defines the data structures and methods necessary to implement
the shaded levels in the protocol stacks. Note that client application(s) may reside at either the initiator or
the target (they are commonly found at the initiator) and the service(s) at the corresponding SBP-2
functional role, target or initiator.

Figure 4 – Protocol stack (service at target)

Figure 5 – Protocol stack (service at initiator)

In order for the application(s) and service(s) to communicate in a peer-to-peer, transport-independent
manner, this document defines how SBP-2 may be used to implement bi-directional transport flows for
both control information and application data. Key concepts introduced below are used to explain the
details of the bi-directional transport flow model:

Client(s)

Image device profile

SBP-2 initiator

IEEE Std 1394-1995

Service(s)

Image device profile

SBP-2 target

IEEE Std 1394-1995

Service(s)

Image device profile

SBP-2 initiator

IEEE Std 1394-1995

Client(s)

Image device profile

SBP-2 target

IEEE Std 1394-1995



12

function: A capability of the device expressed as a unit architecture (unit directory) that contains a
single logical unit (LU zero);

service: A protocol used to control an independently operable component of a function;

management service: A mandatory service provided for each function; it executes control requests
to establish or terminate connections to the other services of the function. The connection to this
function is implicitly established as the result of an SBP-2 login;

queue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set; and

connection: A queue or a pair of queues that affords access to a service. A connection may be
unidirectional or bi-directional; in the latter case, a connection may be blocking or nonblocking. Two
queues are necessary to implement a bi-directional, nonblocking connection.

4.2 Independent data paths for each service

SBP-2 describes all the work to be performed by a particular logical unit as a task set, a collection of
ORBs linked together as shown by Figure 6.

Figure 6 – Multiplexed queues in an SBP-2 task set

Because a single device function (logical unit) may be implemented as one or more services, each of
which may require an independent uni- or bi-directional transport flow, this document extends SBP-2 to
permit multiplexed queues within a single task set; each ORB in the task set is tagged to identify the
logical queue to which it belongs. Although the target may in general reorder the execution of ORBs within
the task set, all of the ORBs within a particular queue are executed in order. Within this framework, both
the initiator and the target manage the single task set illustrated above as the collection of logically
independent queues illustrated below.

Figure 7 – Independent queues (logical model)

Not yet signaled by initiator

ORB_POINTER
Queue xQueue 0Queue yQueue zQueue yQueue z

Queue 0
Queue 0

Queue x
Queue x

Queue y
Queue yQueue y

Queue z

Queue 0

Queue xQueue x

Queue yQueue y

Queue zQueue zQueue z

WORKING SET



13

In theory the size of an SBP-2 task set is bounded only by the amount of memory available to the initiator
to store ORBs; in practice targets have sufficient memory to fetch only a subset of the task set, the
working set. Nonblocking behavior between the separate queues is achieved through cooperative use of
the target's working set. If the initiator never places more ORBs in the task set than the target can
accommodate in its working set, all outstanding ORBs may be fetched by the target and made available
for execution. Equipped with this knowledge, the initiator may restrict the number outstanding ORBs on a
queue by queue basis so that a task slot in the working set is always available for each queue.
Nonblocking bi-directional data transfer between initiator and target may be accomplished through the use
of two queues, one for each direction.

4.3 Connection management

The multiplexed queue management scheme just described requires the allocation of target resources
(queue numbers and task slots) before it may be used. Collectively these resources constitute a
connection between a client and a service. This document defines methods by which connection(s) are
established and subsequently terminated and their resources freed.

Connections may be established by either an initiator or a target. Because of asymmetries in SBP-2, the
connection parameters differ dependent upon the source of the connection request—but at the transport-
independent level perceived by clients and services the connection mechanisms are peer-to-peer and
symmetric. When a client wishes to establish a connection with a particular service in the other device, it
provides a service ID, a unique string that specifies the desired service. Service IDs are maintained in a
separate registry and are assumed by this document to be well-known identifiers. If the specified service
exists in the other device (along with sufficient resources for the connection), the connection is created
and subsequently identified by the queue number(s) assigned to the connection.

Connections may be one of three different types:

– Unidirectional; the application data flow is one direction, either from the initiator to the target or vice
versa;

– Bi-directional (nonblocking); the application data flows in both directions with one queue used for
each of the directions; or

– Bi-directional (blocking); the data flows in both directions via a single queue which has the potential
to block. Nonblocking behavior is not guaranteed by the transport but must be a property of the
application itself. The queue used for management services is an example of a bi-directional,
blocking queue, but because it is restricted to single-threaded, serialized use it cannot block.

Once a connection is established it persists across bus reset(s) until explicitly terminated or abandoned as
a consequence of a logout.

Just as either initiator or target may establish a connection, either may terminate the connection
regardless of which one created the connection. A disconnect may be synchronized with the transport flow
in order to gracefully end the connection or it may preempt the transport flow if necessary. Once the
disconnect is complete, the target resources (queue numbers and task slots) are available for reuse.

4.4 Data transfer between initiator and target

4.5 Control requests and responses

4.6 Unsolicited status





15

5 Data structures

This document defines the format of those parts of the SBP-2 ORB and status block reserved by ANSI
NCITS.325-1998 for specification by command set standards. It also defines a format for control
information transferred between initiator and target. All data structures defined in the following clauses
shall be aligned on quadlet boundaries.

5.1 Transport flow ORBs

ANSI NCITS.325-1998 defines command block ORBs for SBP-2 devices; these have a common 20-byte
header and leave the definition of the subsequent quadlets to individual command set standards. Image
devices compliant with this standard shall use 32-byte command block ORBs (renamed transport flow
ORBs to emphasize their function) whose format is illustrated by Figure 8.  Transport flow ORBs are used
to regulate the transfer of application data or control information between initiator and target.

Figure 8 – Transport flow ORB

The usage of the next_ORB, data_descriptor, rq_fmt, spd, max_payload, page_size and data_size fields
and the notify and page_table_present bits (abbreviated as n and p, respectively, in the figure above) is
defined by ANSI NCITS.325-1998. The notify bit shall be one and the rq_fmt field shall be zero.

The direction bit (abbreviated as d in the figure above) shall specify the direction of data transfer for the
buffer described by data_descriptor. If the direction bit is zero, the target shall use Serial Bus read
transactions to fetch data from the buffer (the flow direction is from the initiator to the target). Otherwise,
when the direction bit is one, the target shall use Serial Bus write transactions to store data in the buffer
(the flow direction is from the target to the initiator).

The control bit (abbreviated as c in the figure above) shall specify the usage of the buffer described by
data_descriptor. If the control bit is zero, the buffer shall be used for application data exchanged between
the client and service. Otherwise, when the control bit is one the buffer shall be used for transport control
information.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the initiator to the target. The meaning of the special bit is unspecified
when either of the direction or control bits are one. Otherwise the meaning and usage of the special bit are

spd

reservedc ms queue

data_size

signature

n
(1)

rq_fmt
(0)

r d max_payload page_sizep

next_ORB

data_descriptor

most significant

least significant

reserved



16

application-dependent and shall apply to all of the application data contained within the buffer described by
the ORB.

NOTE –  Stream socket abstractions include the notion of  out of band data, as some transport protocols allow
portions of incoming data to be marked as "special" in some way. These special data blocks may be delivered
to the user out of the normal sequence—for example, expedited data in X.25 and other OSI protocols or the
use of urgent data in TCP by BSD Unix. The special bit enables such usage to be mapped to a transport
protocol based on SBP-2.

The end_of_message bit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the initiator to the target. The meaning
of the end_of_message bit is unspecified when the direction bit is one. Otherwise, when end_of_message
is one, a boundary exists after the last byte of application data or control information described by the
ORB. In the case of application data, the nature of the boundary and its interpretation shall be specified by
the service definition. When the control bit is one, the end_of_message bit shall also be one; all control
information for a single request or response shall be contained within one buffer.

NOTE –  Need an example illustrative of the use of the end_of_message bit.

The queue field shall specify a queue number assigned the target in either a CONNECT request or
response.

The signature field shall contain an identifying number assigned by the initiator and shall be unique within
the context of a queue. This field is used to facilitate the resumption of data transfer after a bus reset or
other transient interruption while minimizing retransmission of data securely stored prior to the interruption
(see X).

5.2 Control information

Control information, both requests and their corresponding responses, may be exchanged between
initiator and target via command ORBs whose control bit is set to one. This indicates that the data in the
buffer (or the data to be stored in the buffer) associated with the ORB is control information rather than
application data. Only one control request or response shall be transferred by an ORB; the format of the
control information in the buffer is illustrated by Figure 9.

Figure 9 – Control information format

The rq bit shall specify whether the control function is a request or a response. A value of one indicates a
request.

The ctrl_function field shall specify the control function, as defined by the table below.

responserq ctrl_function reserved

parameter(s)

most significant

least significant



17

The response field is valid only when the rq bit is zero. In this case, it encodes a response indication for
the corresponding control function, as defined by the table below.

The remainder of the control information, up to the maximum size specified by data_size in the ORB that
references the control information buffer, shall consist of one or more parameters. Each parameter shall
be quadlet-aligned and occupy an integral number of quadlets. The first parameter shall start in the
second quadlet of control information and subsequent parameters, if any, shall immediately follow the
preceding parameter. The order in which parameters appear is unimportant. Any quadlets that follow the
last parameter, up to the end of the control information, shall be cleared to zero.

The parameter ID shall specify the parameter format, either immediate or variable-length. The most
significant bit of the parameter ID determines the format; parameters whose ID values are in the range
zero to 7F16, inclusive, shall conform to the format specified by Figure 10 while those in the range 8016 –
FF16, inclusive, shall conform to the format specified by Figure 11. Defined values for parameter ID are
given in Table 1; all values not specified are reserved for future standardization.

ctrl_function Name Comment

0 Reserved for future standardization

1 CONNECT Establish a connection with a particular service

2 DISCONNECT Terminate a connection once it has quiesced

3 ABORT
CONNECTION

Immediately terminate a connection without regard
to its current state

4 SERVICE
DIRECTORY

Query all the services implemented (identified by a
list of service Ids)

5 – 7F16 Reserved for future standardization

response Definition

0 Request completed OK; response parameters are
meaningful.

1 Unknown control function.

2 Insufficient resources are available to complete the
request; the same request may succeed if resubmitted
later.

3 The service identified by the SERVICE_ID parameter
does not exist.

4 Mismatch between actual and expected queue
number parameter(s).

5 The connection request is refused.

6 The connection identified by the queue number
parameter(s) does not exist.

FF16 Unspecified error.



18

Table 1 – Parameter ID values

The format of immediate parameters is shown below.

Figure 10 – Immediate parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The parameter_value field shall specify the immediate value of the parameter. Unless otherwise specified
for a particular value of parameter_ID, the value field shall contain an unsigned 24-bit number.

The format of variable-length parameters (which are usually ASCII text strings) is shown below.

Figure 11 – Variable-length parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The length field shall specify the parameter length, in bytes.

The parameter_value field shall contain the value of the parameter and shall commence with the most
significant byte of the parameter value. If the length of the parameter is not a multiple of four, the
parameter value shall be padded with trailing bytes of zero. Unless otherwise specified for a particular
value of parameter_ID, the value field shall contain an ASCII text string without leading or trailing blank
characters.

Parameter ID Parameter name Description

1 TASK_SLOTS The maximum size of the working set. Dependent upon context,
this is either the maximum supported by the target or the maximum
utilized by the initiator.

8216 SERVICE_ID An ASCII string that uniquely identifies a service.

3 I2T_QUEUE The queue number (within the context of a connection) used for the
transport of application data from the initiator to the target

4 T2I_QUEUE The queue number (within the context of a connection) used for the
transport of application data from the target to the initiator

parameter_ID parameter_value

most significant

least significant

parameter_ID length

parameter_value

most significant

least significant

pad with zero bytes as necessary



19

5.3 Status block

As described by ANSI NCITS.325-1998, a target may store status at an initiator status_FIFO address
when a request completes (successfully or in error) or because of an unsolicited event (device status
change). The status_FIFO address is obtained either explicitly from the ORB to which the status pertains
or implicitly from the fetch agent context. Whenever the target has status to report and is enabled to do so,
it shall store the status block shown below.

Figure 12 – Status block format

The definition and usage of the src, resp, len, sbp_status, ORB_offset_hi and ORB_offset_lo fields, as
well as the dead bit (abbreviated as d in the figure above), are specified by ANSI NCITS.325-1998.

The len field shall have a value of three to indicate that the length of the status block is four quadlets.

The status field shall specify the completion status of the transport flow requested by the ORB, as
encoded by the table below.

The attention bit (abbreviated as a in the figure above) indicates the availability of target control
information. When the attention bit is one, the initiator should post an ORB for queue zero to retrieve the
control information. Once set to one by the target, this bit shall remain set until the initiator successfully
retrieves the control information.

The target_data_pending bit (abbreviated as t in the figure above) indicates the availability of target
application data for the queue specified by the ORB identified by ORB_offset_hi and ORB_offset_lo.
When the target_data_pending bit is one, the initiator should post an ORB for the specified queue to
retrieve the application data. The target shall zero this bit when there is no pending application data
awaiting transfer to the initiator. The meaning of target_data_pending is unspecified for an unsolicited
status block.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the target to the initiator. The meaning of the special bit is unspecified
when the value of the src field is two or when (in the ORB identified by ORB_offset_hi and ORB_offset_lo)
either the direction bit is zero or the control bit is one. The meaning and usage of the special bit are
application-dependent and shall apply to all of the application data contained within the buffer described by
the ORB.

status Description

0 The application data or control information has been successfully
transferred; consult the residual field for details of the actual transfer length.

1 Invalid queue; the queue identified in the ORB has not been allocated to an
active connection.

2 Target reset by another initiator; all tasks aborted.

residual

ORB_offset_lo

src ORB_offset_hi

status

most significant

least significant

sbp_statusresp

r

lend

st ma reserved



20

The end_of_message bit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the target to the initiator. The meaning
of the end_of_message bit is unspecified when the value of the src field is two or when the direction bit in
the ORB identified by ORB_offset_hi and ORB_offset_lo is zero. Otherwise, when end_of_message is
one, a boundary exists after the last byte of application data or control information described by the ORB.
In the case of application data, the nature of the boundary and its interpretation shall be specified by the
service definition. When the control bit in the ORB identified by ORB_offset_hi and ORB_offset_lo is one,
the end_of_message bit in the associated status block shall also be one; all control information for a single
request or response shall be contained within one buffer.

The residual field shall specify the difference between the requested and actual data transfer lengths, in
bytes. The target shall calculate residual by subtracting the actual data transfer length from the size of the
buffer provided by the initiator; negative values are indicated in two’s complement notation. A nonzero
residual value is not necessarily indicative of an error.



21

6 Control and status registers

The control and status registers (CSR’s) implemented by a target shall conform to the requirements
defined by this standard and its normative references. The CSR’s may be arranged in three principal
categories:

– core registers defined by draft standard IEEE P1212r and required by either that standard or this
document;

– bus-dependent registers required by IEEE Std 1394-1995; and

– unit architecture registers required by ANSI NCITS 325.1998.

The relevant standard shall be consulted for details of register definition and usage; the table below
provides a quick reference that summarizes all CSRs used by this document. Except for the optional
MESSAGE_REQUEST and MESSAGE_RESPONSE registers, all of the CSRs are mandatory.

Offset Register name Description

0 STATE_CLEAR State and control information

4 STATE_SET Sets STATE_CLEAR bits

8 NODE_IDS Contains the 16-bit node_ID value used to
address the node

C16 RESET_START Resets the node’s state

1816 – 1C16 SPLIT_TIMEOUT Time limit for split transactions

8016 – BC16 MESSAGE_REQUEST Message area for target requests when no
login exists

C016 – FC16 MESSAGE_RESPONSE Message area for initiator responses to
target requests addressed to
MESSAGE_REQUEST.

21016 BUSY_TIMEOUT Controls transaction layer retry protocols

specified by
configuration ROM

MANAGEMENT_AGENT Login and other SBP-2 task management
requests

AGENT_STATE Reports SBP-2 fetch agent state

AGENT_RESET Resets SBP-2 fetch agent

ORB_POINTER Address of current ORB

DOORBELL Signals SBP-2 fetch agent to refetch an
address pointer

specified by login
response data

UNSOLICITED_STATUS_ENABLE Acknowledges the SBP-2 initiator’s receipt
of unsolicited status





23

7 Configuration ROM

All devices compliant with this standard shall implement general format configuration ROM in accordance
with IEEE Std 1394-1995, ANSI NCITS.325-1998, draft standards IEEE P1394a and IEEE P1212r and the
additional requirements of this document. General format configuration ROM is a self-descriptive
structure, an example of which is illustrated below.

Figure 13 – Example configuration ROM hierarchy

With the exception of the dependent leaf (shown shaded), all of the configuration ROM components
shown above are required for devices compliant with this standard. The connection from the root directory
to the unit directory (shown by a dashed line) is optional; instance directories are the preferred access
route for unit directories.

The location of the bus information block is fixed at FFFF F000 040016; the size of the bus information
block predetermines the location of the immediately following root directory. The locations of all other
configuration ROM data structures are determined indirectly by pointers.

During the initialization process that follows a power reset, the first quadlet of configuration ROM shall be
zero; ANSI NCTIS.325-1998 and draft standard IEEE P1212r specify target behavior during initialization.

Once initialization completes, general format configuration shall be accessible to read requests. In addition
to the requirements of the referenced standards and draft standards, the first five quadlets of configuration
shall conform to the format illustrated by Figure 14.

Figure 14 – First five quadlets of configuration ROM

The bus_info_length field shall have a value of four.

The crc_length field shall have a value of four plus the size, in quadlets, of the root directory. This
indicates that the crc field is calculated for both the bus information block and the root directory—but not

c p

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

node_vendor_ID

crccrc_lengthbus_info_length

cyc_clk_acc generationmax_rec

chip_ID_hi

reserved

chip_ID_lo

m i b

most significant

least significant

Bus information
block

Root directory

Instance
directory

Unit
directory

Dependent
leaf

Feature
directory

Keyword
leaf

max_ROM r link_spd



24

for any of the other configuration ROM data structures. The value of the crc field shall be calculated in
accordance with draft standard IEEE P1212r.

The second quadlet shall contain the string “1394” in ASCII characters as specified by draft standard IEEE
P1394a.

The meaning and usage of the irmc, cmc, isc, bmc and pmc bits (abbreviated as m, c, i, b and p,
respectively, in the figure above) and the cyc_clk_acc, max_rec, max_ROM, generation, link_spd,
node_vendor_ID, chip_ID_hi and chip_ID_lo fields are specified by draft standard IEEE P1394a.

The max_rec field shall have a minimum value of TBD.

The max_ROM field shall have a minimum value of one.

TO BE DETERMINED –  The minimum value of one requires image devices to support block read requests
aligned on 64-byte addresses with a data length of 64 bytes. I think it would be preferable to require a
max_ROM value of two to indicate support for block read requests aligned on quadlet addresses with a data
length less than or equal to 1024 bytes. The 1394 PWG has yet to make a decision.

7.1 Root directory

Configuration ROM for devices compliant with this standard shall contain a root directory. The root
directory immediately follows the bus information block and has an address of FFFF F000 041416.
Relevant mandatory and optional entries for the root directory are summarized by the table below; unless
explicitly excluded, any optional root directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

Table 2 – Root directory entries

Directory entry

Name Type Mandatory Description

Vendor_ID I Y 24-bit RAC ID of the vendor that manufactured the
device. This entry shall be immediately followed by
a Textual_Descriptor entry. The addressed textual
descriptor leaf (or leaves, if an intermediate textual
descriptor directory exists)  should contain an
informal form of the vendor name easily
recognizable by users.

Node_Capabilities I Y Identifies which options of the CSR architecture
are implemented.

Node_Unique_ID L Although permitted by draft standard IEEE P1212r,
devices compliant with this standard shall not
include a Node_Unique_ID entry in the root
directory.

Keyword_Leaf L "Thumbnail" description of the characteristics of
the all instances implemented by the device.

Instance_Directory D Y The instance directories provide a method to group
unit architectures (software protocols) to identify
shared physical components.

Unit_Directory D The use of Unit_Directory entries in the root
directory is discouraged; designers should consult
draft standard IEEE P1212r for more information.



25

The Vendor_ID entry shall contain the RAC ID of the vendor that manufactured the device and shall be
immediately followed by a Textual_Descriptor entry that specifies the location of either a textual descriptor
directory or leaf. The referenced textual descriptor leaf or leaves should contain an informal (short) form of
the company name of the vendor.

A Keyword_Leaf entry is optional within the root directory and, if present, shall specify the location of a
keyword leaf in configuration ROM. The keywords included in the keyword leaf shall be the union of all
keywords from all keyword leaves in the device’s configuration ROM.

At least one Instance_Directory entry is required in the root directory; each shall specify the location of an
instance directory in configuration ROM.

7.2 Instance directories

Configuration ROM for devices compliant with this standard shall contain one or more instance directories,
each of which describes the function(s) implemented by a particular instantiation within the device. The
mandatory and optional directory entries for an instance directory are specified by draft standard IEEE
P1212r.

All instance directories shall contain a Keyword_Leaf entry.

7.3 Feature directories

All unit directories compliant with the requirements of clause 7.4 shall contain a Feature_Directory entry
that specifies the location of a feature directory whose content and meaning are compliant with this
clause. Configuration ROM may contain feature directories whose content and meaning are specified
either by this standard, another organization or vendor. Relevant mandatory and optional entries for
feature directories compliant with this document are summarized by the table below; unless explicitly
excluded, any optional feature directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

Table 3 – Feature directory entries

The Specifier_ID entry, whose 24-bit immediate value shall be 00 502916, and the Software_Version entry,
whose 24-bit immediate value shall be TBD, identify this document as the specification of the feature
directory.

The Service_ID entry shall specify the location of a leaf in configuration ROM that contains text strings,
each of which is the service ID of a service implemented by the instance or unit. The format of the leaf
shall be identical to that specified by draft standard IEEE P1212r for keyword leaves.

The Device_ID entry shall specify the location of a textual descriptor leaf in configuration ROM that
contains a device identifying string in the format specified by IEEE Std 1284-1994 clause 6.6.

Directory entry

Name Type Mandatory Description

Specifier_ID I Y 24-bit RAC ID of the directory specifier, 00 502916.

Software_Version I Y In combination with the directory specifier ID, it
identifies the software interface for the unit.

Service_ID L ? Collection of service ID text strings for all services
implemented for the instance or unit.

Device_ID D Y Device identifier commonly used for plug and play
device enumeration.



26

TO BE DETERMINED –  Is this the right way to do this? Or should a textual descriptor leaf be associated with
some other entry? Is the device ID string correlated with a device driver? If so, it probably doesn’t belong in the
feature directory but in the unit directory.

7.4 Keyword leaves

Each instance directory shall be characterized by a set of appropriate keywords selected from X and
placed in a keyword leaf referenced by a Keyword_Leaf entry in the instance directory. Additional
keywords may be present in any keyword leaf, but their meaning and usage are beyond the scope of this
standard. Instances that share exactly the same set of keywords may reference the same keyword leaf.

Keyword Recommended usage

CAMERA

COLOR

DISK

FAX

IMAGE

MFP

MODEM

PHOTO

PRINTER

RECEIVE

SCANNER

SEND

7.5 Unit directories

Configuration ROM for devices compliant with this standard shall contain one or more unit directories,
each of which specifies a software interface (unit architecture) for a device function. Relevant mandatory
and optional entries for unit directories are summarized by the table below; unless explicitly excluded, any
optional unit directory entries permitted by draft standard IEEE P1212r or ANSI NCITS.325-1998 are also
permitted by this document.



27

Table 4 – Unit directory entries

The Specifier_ID entry, whose 24-bit immediate value shall be 00 609E16, and the Software_Version entry,
whose 24-bit immediate value shall be 01 048316, identify the device as compliant with ANSI
NCITS.325-1998, SBP-2.1

The Command_Set_Spec_ID entry, whose 24-bit immediate value shall be 00 502916, and the
Command_Set entry, whose 24-bit immediate value shall be TBD, identify the device as compliant with
this document. The optional Command_Set_Revision entry, if present, shall have a 24-bit immediate value
of zero.

The Unit_Characteristics entry shall specify a vendor-dependent mgt_ORB_timeout and an ORB size of
eight quadlets (32 bytes). Consult ANSI NCITS.325-1998 for details.

Devices compliant with this standard shall contain a single Logical_Unit_Number entry for logical unit zero
in each unit directory. The entry shall specify an unordered execution model (the ordered bit shall be zero).
The device_type field shall contain a value specified by the table below.

                                                          
1 The names given are those used by draft standard IEEE P1212r; they correspond to the names Unit_Spec_ID and

Unit_SW_Version, respectively, in both ISO/IEC 13213:1994 and ANSI NCTIS.325-1998.

Directory entry

Name Type Mandatory Description

Specifier_ID I Y 24-bit RAC ID of the directory specifier.

Software_Version I Y In combination with the directory specifier ID, it
identifies the software interface for the unit.

Command_Set_Spec_ID I Y 24-bit RAC ID of the command set specifier,
00 502916.

Command_Set I Y In combination with the command set specifier ID,
it identifies the command set for the unit.

Management_Agent I Y Provides the address of the SBP-2
MANAGEMENT_AGENT register for login to the
device.

Unit_Characteristics I Y

Logical_Unit_Number I Y

Reconnect_Timeout I TBD—Is this entry mandatory and if so what is the
minimum value for max_reconnect_hold?

Feature_Directory D Y Additional information that describes features
(usually independent of the software interface and
command set) of the unit. At least one of the
feature directories shall be specified by this
standard.



28

TO BE DETERMINED –  Is service ID discovery a sufficient “command set-dependent” method of peripheral
device type discovery? Or do we need a new control request and response? Alternatively, should the
device_type field in all the Logical_Unit_Number entries be 1F16? I think the latter; user service ID discovery in
all cases.

There shall be at least one Feature_Directory entry that specifies the location of a feature directory whose
content and meaning are specified by this standard. There may be additional Feature_Directory entries
that reference feature directories whose content and meaning are specified either by this standard,
another organization or vendor.

device_type Peripheral device type

2 Printer

3 Processor

6 Scanner

9 Communications

1F16 Unspecified device type; command set-dependent means
are necessary to determine the peripheral device type



29

8 Control operations

Before application client(s) and service(s) may exchange data in uni- or bi-directional transport flows
(explained in detail in section 9), control operations are necessary to set up the communication paths. This
section specifies the methods used by both initiator and target to establish and manage connections for
these transport flows.

8.1 Login and queue zero

Access to a target compliant with this standard commences with an SBP-2 login request by the initiator.
Upon successful completion of the login request, the target has reserved resources for the use of the
initiator:

– SBP-2 registers unique to the login (the AGENT_STATE, AGENT_RESET, ORB_POINTER,
DOORBELL and UNSOLICITED_STATUS_ENABLE registers);

– queue zero, the control operations queue; and

– two task slots for use by queue zero ORBs.

Once queue zero exists, either initiator or target may use it in a peer to peer fashion to communicate
control information, requests or responses, to the other. At no time shall the task set contain more than
two ORBs whose queue field is zero.

The completion of a request requires two ORBs, one which describes the control information buffer that
contains the request and a complementary ORB which describes the control information buffer for the
response. Although queue zero provides full peer to peer functionality between initiator and target, the
details of its use are asymmetric and vary according to whether the initiator or the target is the requester.

When an initiator issues a request to a target, they shall perform the following operations:

a) The initiator shall store the request and its associated parameters (if any) in a buffer in its own
system memory and signal to the target fetch agent an ORB, whose queue field and direction bit are
zero and control and end_of_message bits are one, that describes the control information buffer;

b) The target shall fetch the ORB and read the control information buffer. The status block stored by
the target to complete the ORB shall have its attention bit set to one to indicate that the target
intends to transfer control information (the response) to the initiator;

c) At any time the initiator receives a status block whose attention bit is one and there is no ORB in the
task set whose queue field is zero and direction, control and end_of_message bits are one, the
initiator shall create such an ORB and place it in the task set; and

d) Once the target has executed the indicated request and there is an ORB in the working set whose
queue field is zero and direction, control and end_of_message bits are one, the target shall store the
response data in the buffer described by the ORB and then store completion status for the ORB. So
long as the target has pending control information to transfer to the initiator, it shall continue to set
the attention bit to one in any status block (including unsolicited status) stored into the initiator
status_FIFO.

NOTE –  In order to reduce ORB fetch latency, the initiator may place two control information ORBs in the task
set at the same time, the first for the request (with a direction bit of zero) and the second for the response (with
a direction bit of one). Although the algorithm described above works correctly even if the initiator awaits a
status block whose attention bit is one before signaling a target response ORB to receive the response data, it
is more efficient to post both ORBs at the same time.

When a target issues a request to an initiator, they shall perform the following operations:



30

a) The target shall set the attention bit to one in a status block stored into the initiator status_FIFO.
Either unsolicited status or completion status associated with an ORB may be used. So long as the
target has pending control information to transfer to the initiator, it shall continue to set the attention
bit to one in any status block stored into the initiator status_FIFO.

b) At any time the initiator receives a status block whose attention bit is one and there is no ORB in the
task set whose queue field is zero and direction, control and end_of_message bits are one, the
initiator shall create such an ORB and place it in the task set;

c) Once there is an ORB in the working set whose queue field is zero and direction, control and
end_of_message bits are one, the target shall store the control information data (request) in the
buffer described by the ORB and then store completion status for the ORB. The attention bit shall be
zero in the status block associated with the ORB;

d) When the initiator has executed the indicated request, it shall store the response and its associated
parameters (if any) in a buffer in its own system memory and signal to the target fetch agent an ORB
that describes the control information buffer. The ORB’s queue field and direction bit shall be zero
and the control and end_of_message bits shall be one;

e) The target shall fetch the ORB and read the response from the control information buffer. The status
block stored by the target to complete the ORB may have its attention bit set to one if the target
intends to transfer other control information (request or autonomous response) to the initiator.

It is possible for both initiator and target to initiate requests at roughly the same time. In this case the
working set contains an ORB for transfer of the request from initiator to target while the status block
attention condition is simultaneously asserted by the target. The ordered execution properties of queue
zero give a natural precedence to initiator requests over target requests, as follows. When a target fetches
an ORB whose queue field and direction bit are zero and whose control and end_of_message bits are
one, the request contained in the control information shall be processed before a request is transferred to
the initiator. Consequently, if a target has an uncompleted initiator request when it fetches an ORB whose
queue field is zero and whose direction, control and end_of_message bits are one it shall not store any
control information except the response that completes the request.

When neither initiator nor target have outstanding requests or responses, the control queue (queue zero)
is idle and there shall be no ORBs in the task set whose queue field is zero.

8.2 Autonomous response information

The preceding clause describes the use of queue zero for request / response pairs between initiator and
target. It is also possible for either initiator or target to autonomously transfer response information to the
other. Autonomous response information is typically status information and does not necessarily require
any additional action on the part of the recipient.

Autonomous response information may be sent for any of the ctrl_function values enumerated in the table
below.

The response code in autonomous response information shall be zero.

Autonomous response information shall not be transferred while there is an uncompleted control request.
A target requests the transfer of autonomous response information by means of the status block attention
bit. If a target asserts attention and subsequently fetches an initiator request ORB, it shall first complete
the initiator’s control request and transfer the corresponding response information to the initiator before

ctrl_function Name

4 SERVICE DIRECTORY

5 STATUS



31

transferring the autonomous response information. The attention bit shall remain asserted in any status
blocked stored in the initiator status_FIFO while the transfer of the autonomous response information is
pending.

8.3 Service discovery

Services implemented by either initiator or target are uniquely identified by their service ID, an ASCII string
registered with TBD. A client application that wishes to establish a connection with a particular service
may attempt the connection without a priori knowledge that the service is implemented or the client
application may request service directory information.

A service discovery request shall have a ctrl_function code of SERVICE DIRECTORY and no parameters.
The response information shall contain zero or more SERVICE_ID parameters that identify all of the
services implemented. The order of the SERVICE_ID parameters in the response is unspecified.

TO BE DETERMINED –  Some method of “paging” through large quantities of service ID information needs to
be agreed.

8.4 Connection management

Table 5 – Connection type encoded by queue ID parameters

Connection type I2T_QUEUE value T2I_QUEUE value

unrestricted —
Unidirectional

— unrestricted

Bi-directional
(nonblocking) not equal to T2I_QUEUE not equal to I2T_QUEUE

Bi-directional
(blocking) equal to T2I_QUEUE equal to I2T_QUEUE

8.4.1 Connection establishment

8.4.1.1 Connection established by an initiator

8.4.1.2 Connection established by a target

8.4.2 Disconnection

8.5 Queue status information





33

9 Transport flow operations

9.1 Data transfer to a target

9.2 Data transfer to an initiator

9.3 Completion status

9.4 Error recovery

9.5 Bus reset





35

Annex A
(normative)

Minimum Serial Bus node capabilities

In addition to the minimum capabilities defined by IEEE Std 1394-1995, ANSI NCITS.325-1998 and draft
standard IEEE P1394a, this annex specifies other capabilities or restrictions mandated by this standard.

A.1 Initiator capabilities

TO BE DETERMINED –  Review all of these (from SBP-2) and determine if this profile requires any GREATER
capabilities.

With the exception of configuration ROM and control and status registers, an initiator shall be capable of
responding to block read or write requests with a data_length less than or equal to 32 bytes.

An initiator shall also be capable of responding to block read requests with a data_length less than or
equal to 4 * ORB_size, where ORB_size is obtained from the Unit_Characteristics entry in the target's
configuration ROM.

For the largest value of max_payload specified in any command block ORB signaled to the target, the
initiator shall be capable of responding to block read and write requests with a data_length less than or
equal to 2 max_payload + 2 bytes.

The initiator shall report the largest of these possible data_length values by setting the value of the
max_rec field in the bus information block in its configuration ROM to a value equal to or greater than (log2

data_length) - 1.

A.2 Target capabilities

TO BE DETERMINED –  Review all of these (from SBP-2) and determine if this profile requires any GREATER
capabilities.

A target shall be capable of responding to block read or write requests with a data_length equal to eight
bytes if the destination_offset specifies either the MANAGEMENT_AGENT or the ORB_POINTER
register.

A target shall be capable of initiating write requests and shall report this by setting the drq bit in the
Node_Capabilities entry in configuration ROM to one. Consequently, the target shall implement the dreq
bit in the STATE_CLEAR and STATE_SET registers. The value of STATE_CLEAR.dreq shall be
unaffected by a Serial Bus reset. The target may automatically set dreq to zero (request initiation enabled)
upon a power reset or a command reset.

A target shall be capable of initiating block write requests with a data_length of at least eight bytes and
shall report this by setting the value of the max_rec field in the bus information block in configuration ROM
to a value of two.

While initializing after a power reset, a target shall respond to quadlet read requests addressed to
FFFF F000 040016 with either a response data value of zero or acknowledge the request subaction with
ack_tardy, as specified by draft standard IEEE P1394a. This indicates that the remainder of configuration
ROM, as well as other target CSR's, are not accessible.



36

Targets shall support management request functions addressed to the MANAGEMENT_AGENT register
as specified by the table below.

function Support Description

0 Mandatory LOGIN

1 Mandatory QUERY LOGINS

2 — Reserved for future standardization

3 Mandatory RECONNECT

4 Optional SET PASSWORD (see Error!
Reference source not found.)

5 – 6 — Reserved for future standardization

7 Mandatory LOGOUT

8 – A16 — Reserved for future standardization

B16 Not supported ABORT TASK

C16 Mandatory ABORT TASK SET

D16 — Reserved for future standardization

E16 Not supported LOGICAL UNIT RESET

F16 Mandatory TARGET RESET



37

Annex B
(normative)

Control request and response parameters

The table below provides a quick reference to the parameters associated with particular control requests
and responses; consult section 8 for details for a particular request or response. Optional parameters are
shown by parentheses; the last column indicates whether or not the response information may be sent
autonomously.

                                                          
2 At least one queue ID parameter shall be present, either I2T_QUEUE or T2I_QUEUE, and both may be present. In

the latter case the two queue ID parameters may identify different queues or the same queue.
3 The queue ID parameter(s) shall be the same originally provided by the target when the connection was

established.

ctrl_function Name Requester
Request

parameters
Response

parameters
Autonomous

response

Initiator SERVICE_ID
(TASK_SLOTS)

Queue ID(s)2

TASK_SLOTS No

1 CONNECT

Target
Queue ID(s)2

SERVICE_ID
 TASK_SLOTS

(TASK_SLOTS) No

2 DISCONNECT — Queue ID(s)3 — No

3 ABORT
CONNECTION — Queue ID(s)3 — No

4 SERVICE
DIRECTORY — — SERVICE_ID(s) Permitted

5 STATUS Initiator — QUEUE_INFO Target only





39

Annex C
(informative)

Configuration ROM

Configuration ROM is located at a base address of FFFF F000 040016 within a node’s address space. The
requirements for general format configuration ROM for devices compliant with this standard are specified
in section 7. This annex contains illustrations of typical configuration ROM for a variety of devices.

C.1 Bus information block and root directory

Error! Reference source not found. below shows a typical bus information block, root directory and
textual descriptor leaves for devices compliant with this standard. Not shown are the instance, feature and
unit directories themselves; these may vary according to the complexity of the device and its supported
software interfaces. Consult other clauses in this annex for examples of printers, scanners and other,
multifunction devices.

Figure C-1 – Example bus information block and root directory

The CRC in the first quadlet is calculated on following nine quadlets of configuration ROM, the bus
information block and the root directory. Devices should not include all of configuration ROM within the
coverage provided by this CRC; the other directories and leaves each contain their own CRC.

5859 5A2016 (ASCII “XYZ “)

vendor_ID0316

3133 393416 (ASCII “1394”)

node_options (00FF 200016)

chip_ID_lo

node_vendor_ID chip_ID_hi

4 9

4 Root directory CRC (calculated)

CRC (calculated)
most significant

least significant

node_capabilities (00 83C016)

Instance directory offset

0C16

D816

3 Text leaf CRC (calculated)

Text descriptor leaf offset (3)8116

0 specifier_ID (0)

language (0)character_set (0)width (0)



40

The node_options field represents a collection of bits and fields specified draft standard IEEE P1212r. The
value shown, 00FF 200016, represents basic characteristics of a device that is not isochronous capable.
This value is composed of a cyc_clk_acc field with a value of FF16 and a max_rec value of two. The
max_rec field encodes a maximum payload of eight bytes in block write requests addressed to the target.

The Node_Capabilities entry in the root directory, with a key field of 0C16, has a value where the spt, 64,
fix, lst and drq bits are all one. This is a minimum requirement for devices compliant with this standard.

The Vendor_ID entry in the root directory, with a key field of 0316, is immediately followed by a textual
descriptor leaf entry, with a key field of 8116, whose indirect_offset value points to a leaf that contains an
ASCII string that identifies the vendor (the XYZ company). Although the textual descriptor leaf utilizes
minimal ASCII, a permissible variant might include a textual descriptor directory in order to provide
multiple language support.

The Instance_Directory entry in the root directory, with a key field of D816, is the starting point for device
discovery (enumeration) software to search configuration ROM for particular function instances.

EDITOR's NOTE –  Incorporate sample configuration ROM from the CSR and configuration ROM profile for
image devices.

C.2 Scanner with a single unit architecture

C.3 Printer with multiple unit architectures

C.4 Multifunction device with uniform unit architectures


