
Meeting Minutes 
 

PWG MFD Semantic Model Face-to-Face Meeting 
July 10, 2007 

 
On-Site Attendees: 
  
Peter Zehler Xerox Peter.Zehler@xerox.com 
Nancy Chen Oki Data nchen@okidata.com 
Jerry Thrasher Lexmark Thrasher@lexmark.com 
Dave Whitehead Lexmark david@lexmark.com 
Lee Farrell Canon Lee.ferrell@cda.canon.com 
Takashi Nakamura Kyocera Takahshi.Nakamura@ktd-kyocera.com 
Koji Kubono Kyocera Koji.Kubono@ktd-kyocera.com 
Grant Gilmour 366 Software grant@366software.com 
Chris Story Ricoh Chris.Story@ricoh-usa.com 
Ben Kuhn Microsoft benkahn@microsoft.com 
Mike Fenelon Microsoft Mike.Fenelon@microsoft.com 
Erhan Soyer-Osman Microsoft erhanso@microsoft.com 
Andrey Savov Toshiba(TABS) Andrey.savov@tabs.toshiba.com 
Jason Wei Toshiba Jason.wei@tabs.toshiba.com 
Rick Landau Dell Richard_landau@dell.com 
Harry Lewis InfoPrint Solutions harryl@us.ibm.com 
Jan Walter Product Architect jwalter@peerless.com 
Ron Bergman Ricoh Ron.Bergman@ricoh-usa.com 
Craig Whittle Sharp Lab of America cwhittle@sharplabs.com 
Ole Skov MPI Tech osk@mpitech.com 
 
Phone-In Participants: 
Ira McDonald,  Blue Roof Music/ High North Inc. 
Glenn Petrie,  Epson 
 
Collaboration on MFD between Microsoft and PWG – 
- PWG Chair Harry Lewis opened the session with thanking Microsoft sponsoring this meeting that 

has been very productive so far. PWG always strives for building a standard semantic model that 
suits the industry across all vendors’ products. Recently PWG has started specifying a standard MFD 
semantic model that will be independent of all different platforms and interoperable across all 
vendor products. It has been recognized that Microsoft is modernizing its operating systems, sharing 
the common interests with PWG in advancing technology. PWG would like to have an open forum 
to discuss collaboration with Microsoft in technical aspects. No intellectual properties or product 
schedule will be asked to disclose. 

- MFD Chair Peter Zehler provided a high level overview of MFD modeling that led into a discussion of 
collaboration with Microsoft in scan service: 

o PWG semantic model version one is basically a model from internet printing protocol. Right 
now PWG is working toward a MFD semantic model. 



o The PWG semantic model has a container which is basically a server. The server has a “system” 
element that provides summarized total of services. “Services” element has print, copy, scan, 
emailin, emailout, faxin, faxout, transform (transform data later used in workflow). The device 
aspects of the server has console, cover, finisher, interpreter, marker, … and some aspect of 
WIMS. WIMS has the concept of managers and agents, and the view of devices not subunits so 
that free-standing devices can also be managed. 

o The focus of today’s discussion is service aspect of MFD model.  Print service is done. PWG had 
started on defining fax service, but it has been recognized that both print and scan services have 
many common properties and components that can be used for many other MFD services such as 
fax, copy. Thus the focus now is on Scan Service. There have been a lot of discussions on how to 
keep the industry from diverging the semantics of scan service. Microsoft has published WSD-
print and WSD-scan that have heavily reused the PWG semantic model. Because of the reuse of 
the common model, it was quite trivial to build gateways to UPnP, IPP, WSD, JDF-print,… ,etc. 
PWG would like to see the reuse of the semantics for scanning and discuss with Microsoft on 
collaboration of the reuse of PWG semantics around the scan service. 

- Collaboration Discussions: 
o Mike Fenelon explained that Microsoft’s concern is its contractual agreements with 

individual company’s contribution to WSD-Scan. Unfortunately Microsoft can not provide 
WSD-scan specification as a whole for the basic starting point of PWG scan service. But 
Mike is free to discuss the basic concept of scanning, and contribute according to his own 
knowledge to move the model to the right direction. Cut and paste the content of WSD-scan 
specification at all level is not allowed due to many intellectual properties involved in the 
specification. Peter Zehler reported that Xerox has allowed him to provide PWG his inputs 
contributed to Microsoft WSD-scan before. After some discussions, the group’s 
understanding was that Microsoft (Mike) is happy to contribute as a PWG member, but can 
not let PWG take the entire WSD-scan specification due to the contractual agreement with 
many companies. But there is nothing to prevent an individual company to take whatever it 
contributed to WSD-scan before to PWG scan service if the company chooses so. Mike 
recommended all PWG members continue working on MFD scan services, he is happy to 
contribute along with all members to keep Scan services and WSD-scan aligned. 

  
MFD Scan Service Schema Walk-Through 
- The schema file for MFD Scan Service to be discussed will be available soon at the PWG MFD web site 

after successfully complied by the .NET WSDL compiler. Currently it has successfully run through the  
Jigsaw XML complier.  

- The PWG semantic model has multiple services, associated with each is a queue and a set of elements 
such as status information, descriptive elements (settable or read only, controlled by policy), processing 
elements (defaults, ready, supported, and a place holder for extension), and status elements inherited 
from the imaging services class. There are state messages and state reasons. State messages are localized 
state reasons. The only scan service specific status extensions are the scan service specific counters. 
Both the status requests and return of state messages are in the current locale of the server – like IPP. It 
is possible that there will be requests made in five different locales, each is returned with a state message 
that is in the same locale of the request. There is a place holder for vendor’s extension for a state 
message. The extension of scan specific descriptive information is done the same way. Scan service has  
subunits which provide the view to the subunits that the services depend. Similar to print there are job 
level processing elements. Currently the group has agreed to the high level semantics, not lower level 



yet. Each service has a queue which has a list of jobs. Each job currently has a single scan document. 
More elements will be added into the schema as more are defined in the Scan Service specification. 

- Scan Service Operations proposed in the latest specification not only have scan service specific 
operations, but also operations common to all devices such as disable/enable, pause/resume. 
Disable/enable has no parameter and returns successful or failed status. Many parameters in operations 
still need to be defined. Currently in web service binding, there are two port types implemented: one 
handles scan service specific operations, another port type handles template management operations 
such as store, retrieve, list templates. There are also operations for get, set, and store templates, yet the 
elements of the template has not been defined. The CreateScanJob is an operation to send request to scan 
service, the details of which still need to be defined. The destination of a scan resides in the scan job 
ticket which is a copy or a reference of a scan job template. A scan job template is an unbound ticket 
that can be predefined and store away. When a scan job is requested, the template is copied into the scan 
job ticket which contains all job processing parameters, one of the elements is the scan destination. The 
return of a CreateScanJob operation is a list of elements that wasn’t supported in a JobId. The job from 
CreateScanJob request has a description and a list of document processing instructions which is   
inherited from the parent imaging job class. Right now the imaging job class does not have scan specific 
extensions.  

 
Use Cases Review 
- The use cases previously discussed in weekly working group meetings were reviewed to see how data is 
exchanged between client and server. 

o Walk-Up Scan with Pre-created Scan Template: 
Step 1: User place document on scanner 
Step 2: Scan Document operations: 

User uses scan service UI to invoke the ListTemplate operation that allows a user to 
select a template from the list of stored templates, each can be identified by an Id or 
Name. A template has descriptive and processing information of a scan job, but does 
not have the metadata associated with the content of scan document. Metadata of this 
sort is out of the scope of scan service, but can be described in transform service of 
MFD. 
The scan service performs a CreateScanJob operation that allows scan service to 
create a scan job. The operation has a parameter which is either a copy or a reference 
to scan template from which the scan job ticket is created and associated with the job.  

Step 4: The scan service performs a ScanJobReponse operation that returns the scan JobId to 
  the user (who could be a network scan user). In Print, there is AddDocument for  
  multiple document jobs, then CloseJob operation is to signal a job is ready to be  
  scheduled. In scan, the assumption is there is only one single document per job.  
  Therefore there is no need to AddDocument and CloseJob. There is the use case when 
  a user would want to scan a bunch of photos, each should be output as a single  
  file or document in JPEG format.  This case can be viewed as single job with single 
  document object association with which multiple documents can be output. It is a  
  hardware specific implementation issue as whether each sheet requires a push on scan 
  button. A question was asked whether we should consider a complex use case when a 
  user would want to be able to perform a scan by instructing certain originals be  
  scanned from ADF, then others from the platen in some ordered sequence, and back 
  and forth, so the scan service needs to scan and assemble the pages properly from  



  both inputs into a single document. It was recognized no user in the right mind can 
  perform such complex scan. The document assembly process should be considered 
  the function of a higher level orchestrator such as a software tool or document  
  workflow application working from multiple jobs. The scan ticket lifecycle diagram 
  was examined again to see whether the scan service model need to changes to  
  accommodate these use cases. After some length of discussion it is clear that we need 
  to allow a single job to output multiple scan documents from one document object, 
  such as one JPEG file per scanned photo from a single ADF photo scan job. These 
  individual document files can then be stored in an internal or external repository.  
  Since there is no way the scan service can mandate, at the job level, what document 
  metadata (data about the content of document data) should be associated with each 
  document that is stored in a document repository, metadata is out of scope of scan 
  service model. Clearly these stored image files can then be OCRed and index  
  information be added for further use by a higher level vendor’s application, but this is 
  out side the scope of scan service. Clearly we need to show multiple cardinality  
  association of scan documents with a single document object. It is also recognized 
  that the document object model in the pre-standard job ticket API already allows   
  multiple document data references. All documents in one job have the same job  
  processing parameters. Different job processing instructions will require a separate 
  job. Nancy Chen will take the action to add the cardinality association (0..*) from the 
  document object to multiple document data in the scan ticket lifecycle diagram. It  
  seems that how each image data file is output by the scan service will need to be  
  modeled within the scan service itself.  

 Question was asked whether the CreateScanJob operation should be synchronous  
  which means the operation does not complete until data is available to the user. None 
  responded. Therefore the ScanJobReponse implies that the job is available for  
  scheduling. It is possible a job can indicate JobHoldUntilTime so that multiple jobs 
  are created and scheduled but on hold until the user walks up to scanner to release 
  them. 

Step 5 Scan Job is scheduled right at the implication of ScanJobResponse. 
Step 6 The completion status of a scan job is determined by polling the state of the scan job. 

  The completion status is reached when the last output of the scan job is made. There 
  is a scan service counter which keeps how many images have been scanned. 

Step 7 The alternative to polling the completion state of a scan job is by event driven model – 
  all events will be reported in the model, it’s vendor-implementation dependent for 
  mapping to a specific eventing technology. 

Question asked from Toshiba Attendee Andrey Savov: When a user would like to scan 2000 
 pages within one job, how can scan service allow user to continuously feed the papers into 
 ADF or the platen? One proposal is to model after IPP that has AddDocument and CloseJob. 
 Instead of CreateScanJob, use ScanJobResponse and AddPhysical to allow an open-ended 
 job to add more originals to a scan job. Andrey Savov will provide detailed description of the 
 use case for the group to consider. 
 Create Scan Job Template Use Case: 

o Case 1 User Create a template through a scan client - 
Step 1 User runs a template manager from a scan client. 



Step 2 The template manager at scan client sends a GetScannerElements request which   
  obtains the job description elements and the defaults of the supported job and  
  document processing elements from the scan service, much like obtaining the DPA 
  initial value job in print. 

Step 3 The scan client composes a template. 
Step 4 the scan client sends ValidateTemplate request to the scan service for checking the  
 validity of the values in the composed template.  
Step 5 PutTemplate operation stores the template in scanner or a remote template repository. 

The template has a URL which can be used as a reference to the template in  
subsequent operations. The templates can be retrieved from its repository which could 

 be the scanner or a remote repository. For simplicity the ListTemplate request could 
 be sent to the scan service which discovers and lists all templates stored (locally or 
 remotely).  
o Case 2 User Create a template directly with the Scan Service – 
This case is same as Case 1, except that the scan client is collocated with the scan service. 
Step 1 User walks up to the scan service UI. 
Step 2 The scan service UI displays the supported job and document processing elements,  
 and user selects his desired values for the elements. 
Step 3 The scan service UI automatically validate user’s input values. 
Step 4 A template is created by the scan service using the validated inputs. 
Step 5 The scan service “PutTemplate” operation stores template with its URL. Through scan  

service UI the user can list the stored templates and select the desired template for a 
scan job. 

 Walk-up Scan and Send Document to Storage Use Case 
Step 1 User puts document on scanner. 
Step 2 User gets a list of templates from scan service. 
Step 3 User selects template. 
Step 4 User optionally modifies the copy of template (not the template stored in repository). 
Step 5 User pushes green button. The template is copied into job ticket. A scan job is created,  

and the scan ticket is bound to the job. AddDocument and CloseDocument operations 
(for multiple document job) are no longer needed. At this point, job is implicitly 
scheduled. 

  Step 6 Document data is scanned and associated with the document object. 
  Step 7 Document data is stored. 
  Step 8 End of Job event is sent to the user. 

Step 9 As an alternative to Step 8, user can query the status of scan job via  
GetSanJobElements request. 

In the document object there is a counter for number of images, and in the job object has a 
counter for the number of document data. These counters are indicators of the processing 
status of the job. 
 
If there is an error, a system event should be sent to user. For an error in a subunit for 
example, the scan service will be put in a “pause” state for error recovery, e.g. a jam recovery, 
which is an administrative action. At protocol level, no back-up protocol or “resume” action 
is required.  

 Scan from PC and Store Document in Repository 



o This is the same as the last use case, except the scan is done from a PC. 
Step 1 User puts document on scanner. 
Step 2 User runs scan application from a PC. 
Step 3 The Scan application sends GetScannerElements request to obtain the job description  
 elements and the defaults of the supported job and document processing elements  
 from the scan service. 
Step 4 User selects scan parameters. This could be done by PC which displays the user’s  

template and let the user set the parameters by value or the user could use a template 
manager to select a template and modifies some parameters of the copy of the 
template, or simply by selecting a template by referencing the template (by URL). 

Step 5 Optionally ValidateTemplate request is sent from PC to the scan service. If this is not 
implemented, when a conflict occurred, it’s vendor’s decision to resolve the conflict.  
In print, there is a “fidelity” attribute – ‘true” means don’t proceed if there is a  
conflict, ‘false’ means proceed with best effort. The question is how to return the  
ScanJobResults to the client? Should we tell users what were used in the job ticket?  
Therefore ScanJobResults should return a JobReceipt that tells the user whether the  
job is accepted or rejected and contains actual job ticket to be used for job processing. 

Step 6 The PC sends ScanJob request to the scan service with template by reference or by  
 value. 
Step 7 Job and document is created with a copy of template in scan service. 
Step 8 Scan job is available for scheduling. 
Step 9 ScanJobResults is sent back to PC. One could put the job on hold as soon as job is  
 available for scheduling. Then the job won’t be scheduled. 
Step 10 Job is scheduled and document is scanned by scan service. 
Step 11 Scan service stores document data. 
Step 12 Job is marked complete by scan service. 
Step 13 End-of-Job event is sent by scan service to PC. 
Step 14 As an alternative to Step 13, the PC performs status poll of the scan job. 
 

Proposal for Some Document Scanning Terminologies – 
 The scan area has X and Y orientation. Y is the height and is in the slow scan direction. X is the 

width and is in the fast scan direction.  
 This purpose is to allow user to set the offset relative to the origin and the size of the scan area. 
 We do not want to define scan area in relative to the content of the document being scanned. 
 We want to be able to describe the area to be scanned in relative to the scan mechanism. 
 The origin is where the scan starts, or where the scan mechanism first meets the media. 

 
Scan Ticket Concept Discussion - 

 There seems a preference to move back to the InitialValueJob concept used in DPA. The job ticket 
or template not only includes job processing instructions, but also descriptive elements that allow 
default or initial values of descriptive elements and processing elements. 

 Scan Job Template has the following elements: 
o Job Description Elements  

This is the metadata of a scan job, not the metadata of the content of scan document. These 
are elements settable by administrator, user, or operators. 

 JobName 



 JobOriginatingUser (job owner) 
 JobInformation 
 JobPassword  

• This is to enable a job to be held until the user walks up to scanner, puts in 
secret password to allow job to continue. 

 JobPasswordEncryption 
• This allows user to query what kind of encryption is supported for job 

password encryption. 
 JobAccountingID 

• This is the scan service charge account number.  
The locale of description elements is supported in the current locale of the server which is the 
locale of a request operation. No translation from one locale to another is defined. 

o Job Processing Elements 
 JobHoldUntilTime 

• Absolute time or duration (need to be qualified in semantics) 
• There is also a ReleaseJob operation to release a job on hold 

 JobMessageToOperator 
• Display a message to operator when a job is processed. 

 Note the following elements should be removed from the ImagingJobProcessing 
super class - 

• JobPriority is the priority for a scan job to be scheduled, i.e. the scheduling 
priority among scan jobs. This element should be removed, because there is a 
need to match the actual scan media to a scan job. User needs to make sure the 
right media is placed for the scan job. There is no way for scan service to 
automate this matching in order to support priority. 

• JobSaveDisposition (print-specific, save the job for later processing such as a 
demand re-print) 

• JobRecipientName (to denote who is the recipient for output in print. In scan 
we have data store destination.) 

o Document Processing Elements (elements control the actual scanning) 
 AutoExposure 
 Color parameters 

• Encoding 
o AutoDetect (binary, grey, color) 

 Based on the value of encoding, Color space, samplesPerPixel, 
BitDepth will be affected and honored if specified. 

• Color Space 
• SamplesPerPixel (implied by color space) 
• Bit Depth 

 Contrast – need description 
 Brightness -  
 Magnification – expressed in X (height), Y (width) 
 Gamma – a measurement of contrast and brightness 
 Saturation 
 Resolution (X, Y, pixel per centimeter, prefer to see an absolute unit) 
 Rotation (enumeration 0, 90, 180, 270) 



 Sharpness  
 Filters – need names with semantics, common filters, some applies to transform 

service. 
o Scan Job Status Elements 

 JobId (An unique integer that cannot be reused for a reasonable period of time) 
 JobState (pending, processing, processing stopped, pending held, completed) 
 JobStateReasons (0..N, e.g., completed with success/failure) 
 CreationDateTime (can goes down to seconds) 
 CompletionDateTime 
 NumberOfDocuments 
 ScanCounters 

• Images – an electronic representation of a media sheet side 
• Koctects – the total size of scanned image data 

 
Related Notes from Closing Planary: 

• The weekly MFD Model teleconference time has been changed to Thursday 12pm Pacific time (3pm 
EDT) to accommodate some west coast members’ conflict in schedule. 

 
Action Items: 

• Nancy Chen and Peter Zehler will update the scan service specification and XML schema according 
to the results of today’s discussion and post them to the group as soon as possible. 

• Andrey Savov of Toshiba will provide the detailed descriptions of their open-ended scan job use 
case for the group to consider. 

 
 

 
 


