
1

HTTP 1.1 Conformance Issues for IPP1

2
3

Overview4
5

There are a number of implied conformance requirements for origin servers within the current HTTP 1.16
specification. As anticipated by the IPP working group, a significant portion of the current HTTP 1.17
specification is related to the proper operation of HTTP gateways and/or proxy servers. Very little of the8
document utilizes the word MUST when applied to origin servers. Throughout this document I will use9
the term "current specification" to mean RFC 2068.10

11
The current specification lists two types of compliance: conditional and unconditional. To quote from the12
text of RFC 2068:13

14
An implementation is not compliant if it fails to satisfy one or more15
 of the MUST requirements for the protocols it implements. An16
 implementation that satisfies all the MUST and all the SHOULD17
 requirements for its protocols is said to be "unconditionally18
 compliant"; one that satisfies all the MUST requirements but not all19
 the SHOULD requirements for its protocols is said to be20
 "conditionally compliant."21

22
23

The ratio of SHOULDs to MUSTs in the current specification is quite high so I would suggest the24
following criteria be used for our consideration of HTTP 1.1 compliance. If we envision the environment25
in which IPP clients and servers interoperate as being "closed", then we can assume that conditional26
compliance would be enough to satisfy our requirements. If the environment in which IPP servers and27
clients interoperate is "open", then we should lean towards unconditional compliance.28

29
The terms "closed" and "open" in the above paragraph refer to the operational environment in which IPP30
servers and clients are interoperating. In a "closed" environment, the HTTP "traffic" that is occuring31
betweeen IPP clients and servers is dedicated to IPP. In an "open" environment, either the IPP client32
and/or IPP server is operating in a dual-role as both a generic HTTP client or server, and has knowledge33
of IPP/HTTP protocol (possibly using application/ipp tags).34

35
The rationale for the above proposal is that in a "closed" environment, we have a priori knowledge of36
exactly the types of HTTP methods, status codes, and to some extent, MIME tags that we can expect over37
a particular HTTP connection; and this set of methods, codes, and tags are a subset of HTTP, a subset that38
would fit quite easily within the realm of "conditional" HTTP compliance. In an "open" HTTP39
environment, we have less knowledge of the types of traffic (methods, URI types, status codes, etc.) that40
might have to be handled, and the traditional network protocol guidelines should be met: "Be conservative41
with what you send, but robust in what you can receive". Therefore, unconditional compliance would give42
us the best chance at interoperating within "open" environments.43

44
One other question that should be considered if we use HTTP as a mapping for IPP is whether or not IPP45
is "loosely" coupled to HTTP, or "tightly" coupled. "Loosely" coupled in this context means that we are46
only using HTTP as a pure transport (which is the method my earlier draft employed), and that the "real"47
IPP packets are encoded within "application/ipp" entities. In the loosely coupled model, we would define48
our own separate protocol operations, semantics, and status codes. Using HTTP as a pure transport in the49

2

loosely coupled model would allow rapid implementation of IPP over other transports (directly to TCP,50
SPX, etc.).51

52
In a tightly coupled specification, we would leverage as much of the existing HTTP protocol as possible,53
extending the semantics of certain HTTP methods to be IPP-specific when applied to IPP URIs, as well as54
reusing all of the existing status codes and MIME-like packaging characteristics employed by the current55
HTTP 1.1 specification. In the tightly coupled model, implementations of "dual-role" servers (HTTP/IPP)56
would be easier to deploy and HTTP/IPP clients might be easier to implement. We are also not57
"reinventing the wheel" if a particular need of our model is sufficiently addressed by HTTP 1.1. In the58
tightly coupled model, it might be more difficult to port IPP onto some other application-level transport if59
the need ever arose.60

61
One idea that might have been overlooked is that we should attempt to create conformance requirements62
for both IPP servers, as well as clients. The group is currently looking at creating a mapping of the IPP63
model document directly to HTTP 1.1. It is this goal that this document is trying to address with regards64
to scope and capability. The 'scope' of the effort being how much resources are needed (manpower, code65
size, RAM, CPU cycles, etc.) to implement IPP over HTTP. The 'capability' aspect of our requirements66
asks the question whether or not HTTP meets the transport-requirements or operational requirements67
implied by the IPP model document.68

69
It is assumed that we currently have three alternatives for the choosing a protocol mapping for IPP 1.0:70

71
1. Use HTTP 1.1 origin server capability for IPP servers; use some subset of HTTP 1.1 methods for IPP72
clients. In this scenario, we could not use the full capabilities of MIME since HTTP does not support73
MIME, per the MIME standard.74

75
2. Use an HTTP-like protocol for both IPP servers and clients. We don't say that we're HTTP compliant,76
but we're so close that if we wanted to construct gateways between IPP and HTTP, the work would be77
more or less trivial. In this scenario, since we are not HTTP compliant, we could choose to use MIME78
structures that would not otherwise be supported by a conforming HTTP implementation.79

80
3. We "do our own thing", with no resemblance to anything like HTTP. Our own custom encapsulation,81
headers, status codes, and protocol operation semantics.82

83
At the IETF Plenary in Memphis, and in subsequent teleconferences in the protocol subgroup, it has been84
suggested that we avoid specifying multiple protocol mappings for IPP, at least for the first standards85
effort. Rather, our area directors suggested picking only one mapping and going with that. For this reason,86
this document assumes that the method for job delivery via RFC 1867 to support existing WEB browsers87
will not be supported. Instead, existing browsers will have to utilize IPP support built into the underlying88
operating system environment. New browser technology will either use underlying OS support for IPP, or89
incorporate IPP client capability directly into the browser.90

91
Rather than echo the current HTTP 1.1 specification with regards to MUST and SHOULD requirements, I92
would advise the WG to review RFC 2068 for the words MUST and SHOULD, with special attention to93
where and how I have proposed conditional and unconditional implementations of HTTP for IPP clients94
and servers.95

96

HTTP Proxies97
One aspect of implementing IPP using HTTP that must be decided by the working group would be to take98
advantage of HTTP proxies. Overall inter- or intranet bandwidth could be reduced by allowing99
intermediate HTTP proxies to cache responses to IPP attribute requests. It is recognized that some100
intelligent use of response lifetimes would have to be utilized, but this capability is fully supported by101

3

HTTP 1.1, and can be automatically (dynamically) set on a server-by-server basis. The disadvantage is102
that IPP servers would have to (possibly) implement more support for different types of headers and/or103
methods that would be utilized by proxies in between dedicated IPP servers and clients. Servers would also104
have to manage response lifetimes and possibly include support for content-encodings or other headers105
that proxies might inject into an HTTP transaction.106

107
The remainder of this document is a briefly paraphrased version of my internet-draft regarding key issues108
with implementing IPP tightly coupled to HTTP.109

110

HTTP 1.1 Methods111
112

GET113
HTTP 1.1 GET methods could be used to obtain attributes for different types of IPP objects. If a GET114
method is applied to an IPP printer object, then the attributes for the printer object are returned. If the115
GET method is applied to a job object, then the attributes for the job are returned as the response.116

POST117
The POST method would be used as a way to create IPP objects (printers, jobs, etc.). Initially, the POST118
operation would be used to map the “CreateJob” model operation. The POST method could also be used to119
map the “SendJob” model operation. Using HTTP 1.1 persistent connections, multiple POST operations120
could be used to efficiently deliver job data.121

HEAD122
HTTP 1.1 servers are required to implement the HEAD method. This method is often used to inquire as to123
find out meta-information about resources prior to actually performing a GET operation on the resource.124
This provides a way for clients to learn as much as possible about an object before actually retrieving the125
contents of the resource with a subsequent GET operation. The HEAD method, like the GET method,126
could be used to retrieve meta-information (attributes, etc.) about IPP objects before actually accessing it.127

PUT (OPTIONAL)128
Using the PUT method with an "Allow:" header can provide IPP clients to create IPP objects and specify129
what types of methods are allowed on the object.130

131
132

According to section 5.1.1 of the current specification, only the GET and HEAD methods MUST be133
supported by servers. For a particular type of URI, only certain methods may be supported. In the event of134
an unsupported method being received for a particular URI, the server is required to return a status code135
of 405 (Method not allowed), and include an "Allow:" header field listing exactly which methods are136
supported for the URI in question.137

138
Lightweight embedded IPP server implementations could be unconditionally compliant by only supporting139
the GET, HEAD, and POST methods, and returning a status code of 501 when requests are received140
specifying any other unsupported method. The 501 response should include a "Public:" response header141
indicating which methods the server does support.142

143

HTTP 1.1 General Headers144
145

4

Many of the headers specified by RFC 2068 do not have to be supported by general purpose HTTP servers.146
The following text clarifies what I think IPP should utilize and the HTTP 1.1 conformance issues for each.147

148
149

Cache-Control:150
IPP servers and clients will have to operate within a caching proxy environment. In order to ensure a pure151
client and server environment between IPP clients and servers, we will have to decide whether or not to152
take advantage of caching, or prohibit caching of any and all IPP traffic. If we choose to prohibit caching153
of IPP traffic (to keep things simple), then the "Cache-Control:" general header must be included in all154
IPP requests and responses. The value for the "Cache-Control:" header directive would be "no-cache".155
Also, to make sure there are no HTTP 1.0 caching proxies between HTTP 1.1 clients and servers, we must156
also include the "Pragma:" general header, also specifying "no-cache" as the value.157

158
It is conceivable that there would be some value in caching of attribute requests to IPP printer objects,159
since in a large environment, these requests might be very frequent. The IPP working group may want to160
consider the value in caching certain IPP object attribute requests. If caching of certain IPP response data161
is allowed, then we should also consider the use of the "no-transform" value for the "Cache-Control"162
directive.163

164

Connection:165
The "Connection:" general header could be used by IPP servers or IPP clients to instruct either a remote166
client or server that the HTTP connection be closed. In HTTP 1.1, persistent connections are the rule, not167
the exception. If we decide to allow a "SendJob" operation to occur in multiple POST or PUT operations168
to an IPP server, then persistent connections would be very valuable for enhancing performance of job169
submission. In this type of multiple POST/PUT operation, the last POST/PUT operation required to170
deliver the job data could include the "Connection:" header with the value "close" to instruct the server171
that the connection will be closed after reception of this request.172

173

Content-Coding:174
The "Content-Coding:" entity header field specifies how the entity body of a particular message is to be175
decoded. For HTTP, this is typically a compression encoding so the field would be "gzip" or176
"compressed". If the IPP working group wants to define a base set of content-codings, then the values for177
these codings would be specified in IPP messages via the "Content-Coding:" header.178

179

Content-Language:180
Like the "Content-Coding:" header, this header also specifies information related to the enclosed entity.181
The "Content-Coding:" header describes the natural language in which the entity body has been encoded.182
IPP servers should only return entities in languages that have been "agreed" upon by a particular client in183
a previously received "Accept-Language:" request header.184

185

Content-Length:186
The "Content-Length:" header specifies the size of a message body. IPP clients and servers will use the187
same algorithm as general-purpose HTTP 1.1 servers for determining the length of IPP messages. From188
RFC 2068, the description of the Content-Length header:189

190
Applications SHOULD use this field to indicate the size of the191
 message-body to be transferred, regardless of the media type of the192

5

 entity. It must be possible for the recipient to reliably determine193
 the end of HTTP/1.1 requests containing an entity-body, e.g., because194
 the request has a valid Content-Length field, uses Transfer-Encoding:195
 chunked or a multipart body.196

197

Content-MD5198
The Content-MD5 header can be used by IPP clients and servers to provide a more robust authentication199
method than just basic HTTP authentication. The current HTTP 1.1 specification states that use of the200
MD5 digest authentication is sufficient to protect against accidental modification of the message, but NOT201
sufficient to protect against malicious attempts to modify the message. The IPP working group should202
consider as few security mechanisms to provide a higher degree of interoperability between clients and203
servers. It would seem as if two levels of secure access to IPP objects would suffice: a simple method for204
moderate to insecure sites where security is not an issue, and a very robust method that is sufficient to205
meet the needs of sites requiring very high levels of security, including commercial transactions. The206
simple security could be provided by basic HTTP authentication, and a yet-to-be-decided method (maybe207
SSL or secure MIME) could be utilized in high security environments. With these two scenarios and208
methods, IPP clients and servers would not generate messages with the Content-MD5 header.209

210

Content-Type:211
The Content-Type header would be used by IPP clients and servers to specify IPP-specific entities. The212
Content-Type value would be “application/ipp”. IPP clients and servers would also supply a Content-Type213
modifier “charset”, as part of the applicaion/ipp Content-Type. The “charset” modifier would specify the214
character set used within the application/ipp entity body.215

216

Date:217
The “Date:” header field is currently specified in the HTTP 1.1 document as a MUST header by all218
compliant implementations. The date format used as the value of this header must be in RFC 1123 format.219
There is a recent internet draft that has been published that attempts to describe how some embedded,220
lightweight HTTP server implementations can still be “compliant” even if they don’t contain any realtime221
clock or time capabilities.222

223

Pragma:224
The “Pragma:” directive would only be used by IPP implementations for backwards compatibility with225
HTTP 1.0 caching proxies. The Pragma header would specify the value “no-cache”, which is understood226
by HTTP 1.0 proxies to have the same semantics as the HTTP 1.1 “Cache-Control” directive with the227
value “no-cache”.228

229

Transfer-Encoding:230
For HTTP 1.1, the only “Transfer-Encoding” specified is the “chunked” encoding. Since an HTTP231
connection is “8-bit clean”, the traditional rationale for transfer-encodings (like used in MIME) are232
unneeded. But when IPP implementations are attempting to send messages for which the total length of233
the message cannot be determined, then the message should be transferred as either “chunked” or via a234
multipart message with message boundaries. The current HTTP specification requires that all HTTP 1.1235
applications MUST be able to receive and decode the chunked transfer encoding.236

6

HTTP 1.1 Request Headers237
238

Accept:239
The Accept: header is used to specify certain media types that a client is willing accept as a result of a240
request to a server. IPP clients should always specify (at a minimum) application/ipp, text/html, and241
text/plain.242

243

Accept-Charset:244
This header indicates to servers what character sets a client is willing to accept in a response. According245
to the HTTP 1.1 specification, all clients should be able to support ISO-8859-1.246

247

Accept-Encoding:248
Similar to "Accept:", the Accept-Encoding header is sent from client to server to inform the server what249
types of encoding of responses that the client can handle.250

251

Accept-Language:252
IPP clients would send Accept-Language headers in IPP requests to notify IPP servers what type of253
localization is acceptable to the client.254

255

Authorization:256
IPP servers may protect certain types of IPP objects via HTTP basic authentication. If an IPP client has257
knowledge that a requested resource requires basic authentication, then an appropriate "Authorization:"258
request header should be included in all IPP requests to the IPP object (URI) in question. The client can259
also dynamically learn of the authentication requirements for a particular object if the client attempts to260
access the object without an authentication header. IPP servers that receive un-authenticated requests for261
IPP objects that require basic authentication would return a status code of 401, which indicates to clients262
that authentication is required for accessing the requested object.263

264
It is assumed that, for the lifetime of a particular IPP object (URI), that the user's credentials (once265
successfully validated) will be valid. Therefore, on the first successful authenticated response to a request,266
IPP clients can cache the user's credentials and reuse these credentials on subsequent requests to the server267
for this object. Each subsequent request for the IPP object (URI) would include an "Authorization:" header268
specifying the cached credentials.269

270

From:271
The “From:” header contains the internet e-mail address for the human individual that is responsible for272
the request being generated. The IPP working group has talked about using the “From:” header as a273
means for some type of authentication or access protection. The current HTTP 1.1 specification states that274
the “From:” header “SHOULD NOT be used as an insecure method of access protection”. The275
specification goes on to say that “the interpretation of this field is that the request is being performed on276
behalf of the user specified by the “From:” header, who accepts responsibility for the operation being277
performed.”. The following paragraph from RFC 2068 is especially relevant:278

279
280

Note: The client SHOULD not send the From header field without the281

7

 user's approval, as it may conflict with the user's privacy282
 interests or their site's security policy. It is strongly283
 recommended that the user be able to disable, enable, and modify284
 the value of this field at any time prior to a request.285

286

Host:287
The Host: field typically comes on a separate line after the HTTP method specification. This field MUST288
be set by HTTP 1.1 clients with the network location of the specified URI in the method. All internet-289
based HTTP 1.1 servers MUST respond with a 400 status code to any HTTP 1.1 request message which290
lacks a “Host:” header. This header is used by newer WEB server sites for so-called "virtual host" access.291
IPP could utilize this field in some very interesting ways with regards to multiple logical printers serviced292
by a single IPP/HTTP server.293

294

Proxy-Authorization:295
When there is an HTTP 1.1 caching proxy operating in between an IPP client and server, it is possible296
that certain resources identified by a site administrator might require basic authentication. If an IPP client297
receives a 407 response to a valid IPP request, the client should format an authorization request back to298
the requested resource (URI) using the “Proxy-Authorization:” request header. Section 11 of the current299
HTTP 1.1 specifcation discusses HTTP authorization in detail.300

HTTP 1.1 Response Headers301

Accept-Ranges:302
IPP servers could make use of the "Accept-Ranges:" response header for other purposes than just byte303
ranges. The "Accept-Ranges:" header includes a parameter that specifies what type of range the server is304
capable of handling; "bytes" is just one possible value for this field. Other possible values could include305
"pages", "cost", and other types of range values that would be applicable to printer or print job resources.306

307

Allow:308
The "Allow:" entity header field can be returned by IPP servers to notify IPP clients which HTTP methods309
are allowed to be executed on a particular URI (or IPP object). In the future, we may want to define310
conformance levels with respect to IPP, wherein some IPP servers implement all possible methods on IPP311
objects, and other lighter weight IPP servers are restricted in the domain of methods supported on IPP312
objects. The "Allow:" header permits interoperability between clients and servers of different capabilities.313
The client can adapt its behavior to the capabilities it learns from a particular server.314

315

Content-Location:316
317

 IPP servers can return a Content-Location header that specifies the URI of a job object created with the318
“CreateJob” operation. IPP clients can also use the Content-Location header to specify the target IPP319
object (URI) to which a particular IPP operation is to apply.320

321

Expires:322
If the working group decides that IPP responses can be cached by intermediate HTTP caching proxies,323
then appropriate use of the “Expires:” header should specify how long proxies (and possibly) clients can324
consider the response “valid”. It is understandable that in the case of an embedded IPP/HTTP server that325

8

does not have access to a time source, that the “Expires:” header would not be generated. In this case, the326
embedded server should disable caching of responses using “Cache-Control” headers.327

328

Location:329
The “Location:” header would be used by IPP servers to dynamically redirect IPP clients to other URIs330
that can be contacted for completing the client’s request. The Location header could be used as a331
replacement for the multiple-URL facility discussed in the early IPP-over-HTTP internet draft. IPP332
implementations would follow the direction set forth by the current HTTP 1.1 specification:333

334
“for 201 (“Created”) responses, the “Location” is that of the new resource created by the request. For 3xx335
responses, the location SHOULD indicate the server’s preferred URL for automatic redirection to the336
resource.”337

338
The term “resource” used in the above paragraph would normally be a URI referencing an IPP job object.339

340

Proxy-Authenticate:341
It is possible that, in the presence of caching HTTP 1.1 proxies, that IPP client implementations may have342
to deal with “Proxy-Authenticate” responses. The “Proxy-Authenticate” response header would be343
returned as part of a 407 (Proxy Authentication Required) response. (see also Proxy-Authorization request344
header).345

346

Public:347
The “Public:” response header would be used by IPP servers to inform IPP clients what types of HTTP348
methods are supported by the server. The “Public” response header would typically be used by very349
lightweight HTTP/IPP server implementations that implement a minimal IPP capability.350

351

Retry-After:352
The “Retry-After” response header would be used in tandem with the 503 (Service Unavailable) response353
code to indicate how long the resource (or service) is to remain unavailable. This could be used by IPP354
servers to indicate how long a printing service might be unavailable to IPP clients.355

356

WWW-Authenticate:357
The WWW-Authenticate response header is used to initiate basic HTTP authentication. If an IPP client358
receives a 401 (Unauthorized) response to an IPP request, then the response MAY contain a “WWW-359
Authenticate” header with an appropriate challenge. The next request for this resource formulated by the360
IPP client should contain an “Authorization” header specifying appropriate credentials.361

HTTP 1.1 Status Codes362
363

The status codes recommended by Keith Carter, and in a subsequent document from Bob Herriot seem364
sufficient for a "closed" implementation of IPP clients and servers.365

366

Other issues367
368

9

Administrative Framework369
The care and feeding of IPP client and server implementations should be taken into account during the370
design of the protocol. This framework can get very complicated, especially if proxy and security issues371
are taken into account. Before reaching final consensus on a protocol definition for IPP, the complexity of372
configuring clients and servers should be weighed appropriately.373

374

Print-By-Reference375
There is a recent document, co-authored by Keith Moore, entitled “Definition of the URL MIME376
External-Body Access-Type” (RFC 2017), that discusses an easy way to support the “Print-by-Reference”377
capability that has been discussed in the IPP working group. To avoid replicating the text of the RFC, an378
example of the use of this method would looking something like this:379

380
Content-Type: message/external-body; access-type=”URL”;381
URL=”http://www.yahoo.com/daily-stock-quotes”382

383
This method seems to fit very well with the requirement for “Print-By-Reference”. One aspect of this384
method is that, if any secure access is to be applied to the retrieval of the external body, that any and all385
security mechanisms would have to be specified (encoded) somehow within the URL string.386

387
388

