INTERNET-DRAFT
IPP/1.0: Encoding and Transport
June 30, 1998

INTERNET-DRAFT
Robert Herriot (editor)

Sun Microsystems

<draft-ietf-ipp-protocol-06.txt>
Sylvan Butler

Hewlett-Packard

Paul Moore

Microsoft

Randy Turner

Sharp Labs

June 30, 1998

Internet Printing Protocol/1.0: Encoding and Transport

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Copyright Notice

Copyright (C)The Internet Society (1998). All Rights Reserved.

Abstract

This document is one of a set of documents, which together describe all aspects of a new Internet Printing Protocol (IPP). IPP is an application level protocol that can be used for distributed printing using Internet tools and technologies. The protocol is heavily influenced by the printing model introduced in the Document Printing Application (DPA) [ISO10175] standard. Although DPA specifies both end user and administrative features, IPP version 1.0 (IPP/1.0) focuses only on end user functionality.

The full set of IPP documents includes:

Design Goals for an Internet Printing Protocol [ipp-req] (informational)

Rationale for the Structure and Model and Protocol for the Internet Printing Protocol [ipp-rat] (informational)

Internet Printing Protocol/1.0: Model and Semantics [ipp mod]

Internet Printing Protocol/1.0: Encoding and Transport (this document)

Mapping between LPD and IPP Protocols [ipp lpd] (informational)

The design goals document, “Design Goals for an Internet Printing Protocol”, takes a broad look at distributed printing functionality, and it enumerates real-life scenarios that help to clarify the features that need to be included in a printing protocol for the Internet. It identifies requirements for three types of users: end users, operators, and administrators. The design goals document calls out a subset of end user requirements that are satisfied in IPP/1.0. Operator and administrator requirements are out of scope for version 1.0. The rationale document, “Rationale for the Structure and Model and Protocol for the Internet Printing Protocol”, describes IPP from a high level view, defines a roadmap for the various documents that form the suite of IPP specifications, and gives background and rationale for the IETF working group’s major decisions. The document, “Internet Printing Protocol/1.0: Model and Semantics”, describes a simplified model with abstract objects, their attributes, and their operations. The model introduces a Printer and a Job. The Job supports multiple documents per Job. The model document also addresses how security, internationalization, and directory issues are addressed. The protocol specification, “Internet Printing Protocol/1.0: Encoding and Transport”, is a formal mapping of the abstract operations and attributes defined in the model document onto HTTP/1.1. The protocol specification defines the encoding rules for a new Internet media type called “application/ipp”. The “Mapping between LPD and IPP Protocols” gives some advice to implementors of gateways between IPP and LPD (Line Printer Daemon) implementations.

This document is the "Internet Printing Protocol/1.0: Encoding and Transport" document.

Notice

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Table of Contents

41.
Introduction

2.
Conformance Terminology
4
3.
Encoding of the Operation Layer
4
3.1
Picture of the Encoding
4
3.2
Syntax of Encoding
7
3.3
Version-number
8
3.4
Operation-id
8
3.5
Status-code
8
3.6
Request-id
8
3.7
Tags

8
3.7.1
Delimiter Tags
8
3.7.2
Value Tags
9
3.8
Name-Length
11
3.9
(Attribute) Name
11
3.10
Value Length
12
3.11
(Attribute) Value
13
3.12
Data

13
4.
Encoding of Transport Layer
14
4.1
General Headers
15
4.2
Request Headers
15
4.3
Response Headers
16
4.4
Entity Headers
16
5.
Security Considerations
17
6.
References
17
7.
Author's Address
18
8.
Other Participants:
19
9.
Appendix A: Protocol Examples
19
9.1
Print-Job Request
19
9.2
Print-Job Response (successful)
20
9.3
Print-Job Response (failure)
21
9.4
Print-URI Request
22
9.5
Create-Job Request
23
9.6
Get-Jobs Request
23
9.7
Get-Jobs Response
24
10.
Appendix B: Registration of MIME Media Type Information for "application/ipp"
25
11.
Appendix C: Full Copyright Statement
27

Introduction

This document contains the rules for encoding IPP operations and describes two layers: the transport layer and the operation layer.

The transport layer consists of an HTTP/1.1 request or response. RFC 2068 [rfc2068] describes HTTP/1.1. This document specifies the HTTP headers that an IPP implementation supports.

The operation layer consists of a message body in an HTTP request or response. The document "Internet Printing Protocol/1.0: Model and Semantics" [ipp-mod] defines the semantics of such a message body and the supported values. This document specifies the encoding of an IPP operation. The aforementioned document [ipp-mod] is henceforth referred to as the “IPP model document”

1. Conformance Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [rfc2119].

2. Encoding of the Operation Layer

The operation layer MUST contain a single operation request or operation response. Each request or response consists of a sequence of values and attribute groups. Attribute groups consist of a sequence of attributes each of which is a name and value. Names and values are ultimately sequences of octets

The encoding consists of octets as the most primitive type. There are several types built from octets, but three important types are integers, character strings and octet strings, on which most other data types are built. Every character string in this encoding MUST be a sequence of characters where the characters are associated with some charset and some natural language. . A character string MUST be in “reading order” with the first character in the value (according to reading order) being the first character in the encoding. A character string whose associated charset is US-ASCII whose associated natural language is US English is henceforth called a US-ASCII-STRING. A character string whose associated charset and natural language are specified in a request or response as described in the model document is henceforth called a LOCALIZED-STRING. An octet string MUST be in “IPP model document order” with the first octet in the value (according to the IPP model document order) being the first octet in the encoding Every integer in this encoding MUST be encoded as a signed integer using two’s-complement binary encoding with big-endian format (also known as “network order” and “most significant byte first”). The number of octets for an integer MUST be 1, 2 or 4, depending on usage in the protocol. Such one-octet integers, henceforth called SIGNED-BYTE, are used for the version-number and tag fields. Such two-byte integers, henceforth called SIGNED-SHORT are used for the operation-id, status-code and length fields. Four byte integers, henceforth called SIGNED-INTEGER, are used for values fields and the sequence number.

The following two sections present the operation layer in two ways

· informally through pictures and description

· formally through Augmented Backus-Naur Form (ABNF), as specified by RFC 2234 [rfc2234]

2.1 Picture of the Encoding

The encoding for an operation request or response consists of:

| version-number | 2 bytes - required

| operation-id (request) |

| or | 2 bytes - required

| status-code (response) |

| request-id | 4 bytes - required

| xxx-attributes-tag | 1 byte |

--- |-0 or more

| xxx-attribute-sequence | n bytes |

| end-of-attributes-tag | 1 byte - required

| data | q bytes - optional

The xxx-attributes-tag and xxx-attribute-sequence represents four different values of “xxx”, namely, operation, job, printer and unsupported. The xxx-attributes-tag and an xxx-attribute-sequence represent attribute groups in the model document. The xxx-attributes-tag identifies the attribute group and the xxx-attribute-sequence contains the attributes.

The expected sequence of xxx-attributes-tag and xxx-attribute-sequence is specified in the IPP model document for each operation request and operation response.

A request or response SHOULD contain each xxx-attributes-tag defined for that request or response even if there are no attributes except for the unsupported-attributes-tag which SHOULD be present only if the unsupported-attribute-sequence is non-empty. A receiver of a request MUST be able to process as equivalent empty attribute groups:

a) an xxx-attributes-tag with an empty xxx-attribute-sequence,

b) an expected but missing xxx-attributes-tag.

The data is omitted from some operations, but the end-of-attributes-tag is present even when the data is omitted. Note, the xxx-attributes-tags and end-of-attributes-tag are called ‘delimiter-tags’. Note: the xxx-attribute-sequence, shown above may consist of 0 bytes, according to the rule below.

An xxx-attributes-sequence consists of zero or more compound-attributes.

| compound-attribute | s bytes - 0 or more

A compound-attribute consists of an attribute with a single value followed by zero or more additional values.

Note: a ‘compound-attribute’ represents a single attribute in the model document. The ‘additional value’ syntax is for attributes with 2 or more values.

Each attribute consists of:

| value-tag | 1 byte

| name-length (value is u) | 2 bytes

| name | u bytes

| value-length (value is v) | 2 bytes

| value | v bytes

An additional value consists of:

| value-tag | 1 byte |

--- |

| name-length (value is 0x0000) | 2 bytes |

--- |-0 or more

| value-length (value is w) | 2 bytes |

--- |

| value | w bytes |

Note: an additional value is like an attribute whose name-length is 0.

From the standpoint of a parsing loop, the encoding consists of:

| version-number | 2 bytes - required

| operation-id (request) |

| or | 2 bytes - required

| status-code (response) |

| request-id | 4 bytes - required

| tag (delimiter-tag or value-tag) | 1 byte |

--- |-0 or more

| empty or rest of attribute | x bytes |

| end-of-attributes-tag | 2 bytes - required

| data | y bytes - optional

The value of the tag determines whether the bytes following the tag are:

· attributes

· data

· the remainder of a single attribute where the tag specifies the type of the value.

2.2 Syntax of Encoding

The syntax below is ABNF [rfc2234] except ‘strings of literals’ MUST be case sensitive. For example ‘a’ means lower case ‘a’ and not upper case ‘A’. In addition, SIGNED-BYTE and SIGNED-SHORT fields are represented as ‘%x’ values which show their range of values.

ipp-message = ipp-request / ipp-response

ipp-request = version-number operation-id request-id
 *(xxx-attributes-tag xxx-attribute-sequence) end-of-attributes-tag data

ipp-response = version-number status-code request-id
 *(xxx-attributes-tag xxx-attribute-sequence) end-of-attributes-tag data

xxx-attribute-sequence = *compound-attribute

xxx-attributes-tag = operation-attributes-tag / job-attributes-tag /

 printer-attributes-tag / unsupported-attributes-tag

version-number = major-version-number minor-version-number

major-version-number = SIGNED-BYTE ; initially %d1

minor-version-number = SIGNED-BYTE ; initially %d0

operation-id = SIGNED-SHORT ; mapping from model defined below

status-code = SIGNED-SHORT ; mapping from model defined below

request-id = SIGNED-INTEGER ; whose value is > 0

compound-attribute = attribute *additional-values

attribute = value-tag name-length name value-length value

additional-values = value-tag zero-name-length value-length value

name-length = SIGNED-SHORT ; number of octets of ‘name’

name = LALPHA *(LALPHA / DIGIT / “-” / “_” / “.”)

value-length = SIGNED-SHORT ; number of octets of ‘value’

value = OCTET-STRING

data = OCTET-STRING

zero-name-length = %x00.00
; name-length of 0

operation-attributes-tag = %x01

; tag of 1

job-attributes-tag
= %x02

; tag of 2

printer-attributes-tag = %x04

; tag of 4

unsupported- attributes-tag = %x05
; tag of 5

end-of-attributes-tag = %x03
 ; tag of 3

value-tag = %x10-FF

SIGNED-BYTE = BYTE

SIGNED-SHORT = 2BYTE

DIGIT = %x30-39 ; "0" to "9"

LALPHA = %x61-7A ; "a" to "z"

BYTE = %x00-FF

OCTET-STRING = *BYTE

The syntax allows an xxx-attributes-tag to be present when the xxx-attribute-sequence that follows is empty. The syntax is defined this way to allow for the response of Get-Jobs where no attributes are returned for some job-objects. Although it is RECOMMENDED that the sender not send an xxx-attributes-tag if there are no attributes (except in the Get-Jobs response just mentioned), the receiver MUST be able to decode such syntax.

2.3 Version-number

The version-number MUST consist of a major and minor version-number, each of which MUST be represented by a SIGNED-BYTE. The protocol described in this document MUST have a major version-number of 1 (0x01) and a minor version-number of 0 (0x00). The ABNF for these two bytes MUST be %x01.00.

2.4 Operation-id

Operation-ids are defined as enums in the model document. An operation-ids enum value MUST be encoded as a SIGNED-SHORT

Note: the values 0x4000 to 0xFFFF are reserved for private extensions.

2.5 Status-code

Status-codes are defined as enums in the model document. A status-code enum value MUST be encoded as a SIGNED-SHORT

The status-code is an operation attribute in the model document. In the protocol, the status-code is in a special position, outside of the operation attributes.

If an IPP status-code is returned, then the HTTP Status-Code MUST be 200 (OK). With any other HTTP Status-Code value, the HTTP response MUST NOT contain an IPP message-body, and thus no IPP status-code is returned.

2.6 Request-id

The request-id allows a client to match a response with a request. This mechanism is unnecessary in HTTP, but may be useful when application/ipp entity bodies are used in another context.

The request-id in a response MUST be the value of the request-id received in the corresponding request. A client can set the request-id in each request to a unique value or a constant value, such as 1, depending on what the client does with the request-id returned in the response. The value of the request-id MUST be greater than zero.

2.7 Tags

There are two kinds of tags:

· delimiter tags: delimit major sections of the protocol, namely attributes and data

· value tags: specify the type of each attribute value

2.7.1 Delimiter Tags

The following table specifies the values for the delimiter tags:

Tag Value (Hex)
Delimiter

0x00
reserved

0x01
operation-attributes-tag

0x02
job-attributes-tag

0x03
end-of-attributes-tag

0x04
printer-attributes-tag

0x05
unsupported-attributes-tag

0x06-0x0e
reserved for future delimiters

0x0F
reserved for future chunking-end-of-attributes-tag

When an xxx-attributes-tag occurs in the protocol, it MUST mean that zero or more following attributes up to the next delimiter tag are attributes belonging to group xxx as defined in the model document, where xxx is operation, job, printer, unsupported.

Doing substitution for xxx in the above paragraph, this means the following. When an operation-attributes-tag occurs in the protocol, it MUST mean that the zero or more following attributes up to the next delimiter tag are operation attributes as defined in the model document. When an job-attributes-tag occurs in the protocol, it MUST mean that the zero or more following attributes up to the next delimiter tag are job attributes as defined in the model document. When an printer-attributes-tag occurs in the protocol, it MUST mean that the zero or more following attributes up to the next delimiter tag are printer attributes as defined in the model document. When an unsupported- attributes-tag occurs in the protocol, it MUST mean that the zero or more following attributes up to the next delimiter tag are unsupported attributes as defined in the model document.

The operation-attributes-tag and end-of-attributes-tag MUST each occur exactly once in an operation. The operation-attributes-tag MUST be the first tag delimiter, and the end-of-attributes-tag MUST be the last tag delimiter. If the operation has a document-content group, the document data in that group MUST follow the end-of-attributes-tag

Each of the other three xxx-attributes-tags defined above is OPTIONAL in an operation and each MUST occur at most once in an operation, except for job-attributes-tag in a Get-Jobs response which may occur zero or more times.

The order and presence of delimiter tags for each operation request and each operation response MUST be that defined in the model document. For further details, see section 3.9 “(Attribute) Name” and .section 9 “Appendix A: Protocol Examples”

A Printer MUST treat the reserved delimiter tags differently from reserved value tags so that the Printer knows that there is an entire attribute group that it doesn’t understand as opposed to a single value that it doesn’t understand.

2.7.2 Value Tags

The remaining tables show values for the value-tag, which is the first octet of an attribute. The value-tag specifies the type of the value of the attribute. The following table specifies the “out-of-band” values for the value-tag.

Tag Value (Hex)
Meaning

0x10
unsupported

0x11
reserved for future ‘default’

0x12
unknown

0x13
no-value

0x14-0x1F
reserved for future “out-of-band” values.

The “unsupported” value MUST be used in the attribute-sequence of an error response for those attributes which the printer does not support. The “default” value is reserved for future use of setting value back to their default value. The “unknown” value is used for the value of a supported attribute when its value is temporarily unknown. . The “no-value” value is used for a supported attribute to which no value has been assigned, e.g. “job-k-octets-supported” has no value if an implementation supports this attribute, but an administrator has not configured the printer to have a limit.

The following table specifies the integer values for the value-tag

Tag Value (Hex)
Meaning

0x20
reserved

0x21
integer

0x22
boolean

0x23
enum

0x24-0x2F
reserved for future integer types

NOTE: 0x20 is reserved for “generic integer” if should ever be needed.

The following table specifies the octetString values for the value-tag

Tag Value (Hex)
Meaning

0x30
octetString with an unspecified format

0x31
dateTime

0x32
resolution

0x33
rangeOfInteger

0x34
reserved for collection (in the future)

0x35
textWithLanguage

0x36
nameWithLanguage

0x37-0x3F
reserved for future octetString types

The following table specifies the character-string values for the value-tag

Tag Value (Hex)
Meaning

0x40
reserved

0x41
textWithoutLanguage

0x42
nameWithoutLanguage

0x43
reserved

0x44
keyword

0x45
uri

0x46
uriScheme

0x47
charset

0x48
naturalLanguage

0x49
mimeMediaType

0x4A-0x5F
reserved for future character string types

NOTE: 0x40 is reserved for “generic character-string” if should ever be needed.

NOTE: an attribute value always has a type, which is explicitly specified by its tag; one such tag value is "nameWithoutLanguage". An attribute's name has an implicit type, which is keyword.

The values 0x60-0xFF are reserved for future types. There are no values allocated for private extensions. A new type MUST be registered via the type 2 process.

The tag 0x7F is reserved for extending types beyond the 255 values available with a single byte. A tag value of 0x7F MUST signify that the first 4 bytes of the value field are interpreted as the tag value. Note, this future extension doesn't affect parsers that are unaware of this special tag. The tag is like any other unknown tag, and the value length specifies the length of a value which contains a value that the parser treats atomically. All these 4 byte tag values are currently unallocated except that the values 0x40000000-0x7FFFFFFF are reserved for experimental use.

2.8 Name-Length

The name-length field MUST consist of a SIGNED-SHORT. This field MUST specify the number of octets in the name field which follows the name-length field, excluding the two bytes of the name-length field.

If a name-length field has a value of zero, the following name field MUST be empty, and the following value MUST be treated as an additional value for the preceding attribute. Within an attribute-sequence, if two attributes have the same name, the first occurrence MUST be ignored. The zero-length name is the only mechanism for multi-valued attributes.

2.9 (Attribute) Name

Some operation elements are called parameters in the model document [ipp-mod]. They MUST be encoded in a special position and they MUST NOT appear as an operation attributes. These parameters are:

· “version-number”: The parameter named “version-number” in the IPP model document MUST become the “version-number” field in the operation layer request or response.

· “operation-id”: The parameter named “operation-id” in the IPP model document MUST become the “operation-id” field in the operation layer request.

· “status-code”: The parameter named “status-code” in the IPP model document MUST become the “status-code” field in the operation layer response.

· “request-id”: The parameter named “request-id” in the IPP model document MUST become the “request-id” field in the operation layer request or response.

All Printer and Job objects are identified by a Uniform Resource Identifier (URI) [rfc1630] so that they can be persistently and unambiguously referenced. The notion of a URI is a useful concept, however, until the notion of URI is more stable (i.e., defined more completely and deployed more widely), it is expected that the URIs used for IPP objects will actually be URLs [rfc1738] [rfc1808]. Since every URL is a specialized form of a URI, even though the more generic term URI is used throughout the rest of this document, its usage is intended to cover the more specific notion of URL as well.

Some operation elements are encoded twice, once as the request-URI on the HTTP Request-Line and a second time as a REQUIRED operation attribute in the application/ipp entity. These attributes are the target URI for the operation:

· “printer-uri”: When the target is a printer and the transport is HTTP or HTTPS (for TLS), the target printer-uri defined in each operation in the IPP model document MUST be an operation attribute called “printer-uri” and it MUST also be specified outside of the operation layer as the request-URI on the Request-Line at the HTTP level.

· “job-uri”: When the target is a job and the transport is HTTP or HTTPS (for TLS), the target job-uri of each operation in the IPP model document MUST be an operation attribute called “job-uri” and it MUST also be specified outside of the operation layer as the request-URI on the Request-Line at the HTTP level.

Note: Because the target URI is included twice in an operation, the potential exists that these two values reference the same IPP object, but are not literally identical. One can be a relative URI and the other can be an absolute URI. HTTP/1.1 allows clients to generate and send a relative URI rather than an absolute URI. A relative URI identifies a resource with the scope of the HTTP server, but does not include scheme, host or port. The following statements characterize how URLs should be used in the mapping of IPP onto HTTP/1.1:

1. Although potentially redundant, a client MUST supply the target of the operation both as an Operation and as a URI at the HTTP layer. The rationale for this decision is to maintain a consistent set of rules for mapping IPP to possibly many communication layers, even where URLs are not used as the addressing mechanism.

2. Even though these two URLs might not be literally identical (one being relative and the other being absolute), they MUST both reference the same IPP object.

3. The URI in the HTTP layer is either relative or absolute and is used by the HTTP server to route the HTTP request to the correct resource relative to that HTTP server. The HTTP server need not be aware of the URI within the operation request.

4. Once the HTTP server resource begins to process the HTTP request, it might get the reference to the appropriate IPP Printer object from either the HTTP URI (using to the context of the HTTP server for relative URLs) or from the URI within the operation request; the choice is up to the implementation.

5. HTTP URIs can be relative or absolute, but the target URI in the operation MUST be an absolute URI

The model document arranges the remaining attributes into groups for each operation request and response. Each such group MUST be represented in the protocol by an xxx-attribute-sequence preceded by the appropriate xxx-attributes-tag (See the table below and section 9 “Appendix A: Protocol Examples”). In addition, the order of these xxx-attributes-tags and xxx-attribute-sequences in the protocol MUST be the same as in the model document, but the order of attributes within each xxx-attribute-sequence MUST be unspecified. The table below maps the model document group name to xxx-attributes-sequence

Model Document Group
xxx-attributes-sequence

Operation Attributes
operations-attributes-sequence

Job Template Attributes
job-attributes-sequence

Job Object Attributes
job-attributes-sequence

Unsupported Attributes
unsupported- attributes-sequence

Requested Attributes (Get-Job-Attributes)
job-attributes-sequence

Requested Attributes (Get-Printer-Attributes)
printer-attributes-sequence

Document Content
in a special position as described above

If an operation contains attributes from more than one job object (e.g. Get-Jobs response), the attributes from each job object MUST be in a separate job-attribute-sequence, such that the attributes from the ith job object are in the ith job-attribute-sequence. See Section 9 “Appendix A: Protocol Examples” for table showing the application of the rules above.

2.10 Value Length

Each attribute value MUST be preceded by a SIGNED-SHORT which MUST specify the number of octets in the value which follows this length, exclusive of the two bytes specifying the length.

For any of the types represented by binary signed integers, the sender MUST encode the value in exactly four octets..

For any of the types represented by character-strings, the sender MUST encode the value with all the characters of the string and without any padding characters.

If a value-tag contains an “out-of-band” value, such as “unsupported”, the value-length MUST be 0 and the value empty — the value has no meaning when the value-tag has an “out-of-band” value. If a client receives a response with a nonzero value-length in this case, it MUST ignore the value field. If a printer receives a request with a nonzero value-length in this case, it MUST reject the request.

2.11 (Attribute) Value

The syntax types and most of the details of their representation are defined in the IPP model document. The table below augments the information in the model document, and defines the syntax types from the model document in terms of the 5 basic types defined in section 3 “Encoding of the Operation Layer”. The 5 types are US-ASCII-STRING, LOCALIZED-STRING, SIGNED-INTEGER, SIGNED-SHORT, SIGNED-BYTE, and OCTET-STRING.

Syntax of Attribute Value
Encoding

textWithoutLanguage, nameWithoutLanguage
LOCALIZED-STRING.

textWithLanguage

OCTET_STRING consisting of 4 fields:

a) a SIGNED-SHORT which is the number of octets in the following field

b) a value of type natural-language,

c) a SIGNED-SHORT which is the number of octets in the following field,

d) a value of type textWithoutLanguage.

The length of a textWithLanguage value MUST be 4 + the value of field a + the value of field c.

nameWithLanguage
OCTET_STRING consisting of 4 fields:

a) a SIGNED-SHORT which is the number of octets in the following field

b) a value of type natural-language,

c) a SIGNED-SHORT which is the number of octets in the following field

d) a value of type nameWithoutLanguage.

The length of a nameWithLanguage value MUST be 4 + the value of field a + the value of field c.

charset, naturalLanguage, mimeMediaType, keyword, uri, and uriScheme

US-ASCII-STRING

boolean
SIGNED-BYTE where 0x00 is ‘false’ and 0x01 is ‘true’

integer and enum
a SIGNED-INTEGER

dateTime
OCTET-STRING consisting of eleven octets whose contents are defined by “DateAndTime” in RFC 1903 [rfc1903].

resolution
OCTET_STRING consisting of nine octets of 2 SIGNED-INTEGERs followed by a SIGNED-BYTE. The first SIGNED-INTEGER contains the value of cross feed direction resolution . The second SIGNED-INTEGER contains the value of feed direction resolution. The SIGNED-BYTE contains the units value.

rangeOfInteger
Eight octets consisting of 2 SIGNED-INTEGERs. The first SIGNED-INTEGERs contains the lower bound and the second SIGNED-INTEGERs contains the upper bound.

1setOf X
encoding according to the rules for an attribute with more than 1 value. Each value X is encoded according to the rules for encoding its type.

octetString
OCTET-STRING

The type of the value in the model document determines the encoding in the value and the value of the value-tag.

2.12 Data

The data part MUST include any data required by the operation

3. Encoding of Transport Layer

HTTP/1.1 is the transport layer for this protocol.

The operation layer has been designed with the assumption that the transport layer contains the following information:

· the URI of the target job or printer operation

· the total length of the data in the operation layer, either as a single length or as a sequence of chunks each with a length.

It is REQUIRED that a printer implementation support HTTP over the IANA assigned Well Known Port 631 (the IPP default port), though a printer implementation may support HTTP over port some other port as well. In addition, a printer may have to support another port for privacy (See Section 5 “Security Considerations”.

Note: even though port 631 is the IPP default, port 80 remains the default for an HTTP URI. Thus a URI for a printer using port 631 MUST contain an explicit port, e.g. "http://forest:631/pinetree".

Note: Consistent with RFC 2068 (HTTP/1.1), HTTP URI’s for IPP implicitly reference port 80. If a URI references some other port, the port number MUST be explicitly specified in the URI.

Each HTTP operation MUST use the POST method where the request-URI is the object target of the operation, and where the “Content-Type” of the message-body in each request and response MUST be “application/ipp”. The message-body MUST contain the operation layer and MUST have the syntax described in section 3.2 “Syntax of Encoding”. A client implementation MUST adhere to the rules for a client described in RFC 2068 [rfc2068]. A printer (server) implementation MUST adhere the rules for an origin server described in RFC 2068.

The IPP layer doesn’t have to deal with chunking. In the context of CGI scripts, the HTTP layer removes any chunking information in the received data.

A client MUST NOT expect a response from an IPP server until after the client has sent the entire response. But a client MAY listen for an error response that an IPP server MAY send before it receives all the data. In this case a client, if chunking the data, can send a premature zero-length chunk to end the request before sending all the data. If the request is blocked for some reason, a client MAY determine the reason by opening another connection to query the server.

In the following sections, there are a tables of all HTTP headers which describe their use in an IPP client or server. The following is an explanation of each column in these tables.

· the “header” column contains the name of a header

· the “request/client” column indicates whether a client sends the header.

· the “request/ server” column indicates whether a server supports the header when received.

· the “response/ server” column indicates whether a server sends the header.

· the “response /client” column indicates whether a client supports the header when received.

· the “values and conditions” column specifies the allowed header values and the conditions for the header to be present in a request/response.

The table for “request headers” does not have columns for responses, and the table for “response headers” does not have columns for requests.

The following is an explanation of the values in the “request/client” and “response/ server” columns.

· must: the client or server MUST send the header,

· must-if: the client or server MUST send the header when the condition described in the “values and conditions” column is met,

· may: the client or server MAY send the header

· not: the client or server SHOULD NOT send the header. It is not relevant to an IPP implementation.

The following is an explanation of the values in the “response/client” and “request/ server” columns.

· must: the client or server MUST support the header,

· may: the client or server MAY support the header

· not: the client or server SHOULD NOT support the header. It is not relevant to an IPP implementation.

3.1 General Headers

The following is a table for the general headers.

General-Header
Request
Response
Values and Conditions

Client
Server
Server
Client

Cache-Control
must
not
must
not
“no-cache” only

Connection
must-if
must
must-if
must
“close” only. Both client and server SHOULD keep a connection for the duration of a sequence of operations. The client and server MUST include this header for the last operation in such a sequence.

Date
may
may
must
may
per RFC 1123 [rfc1123] from RFC 2068

Pragma
must
not
must
not
“no-cache” only

Transfer-Encoding
must-if
must
must-if
must
“chunked” only . Header MUST be present if Content-Length is absent.

Upgrade
not
not
not
not

Via
not
not
not
not

3.2 Request Headers

The following is a table for the request headers.

Request-Header
Client
Server
Request Values and Conditions

Accept
may
must
“application/ipp” only. This value is the default if the client omits it

Accept-Charset
not
not
 Charset information is within the application/ipp entity

Accept-Encoding
may
must
empty and per RFC 2068 [rfc2068] and IANA registry for content-codings

Accept-Language
not
not
language information is within the application/ipp entity

Authorization
must-if
must
per RFC 2068. A client MUST send this header when it receives a 401 “Unauthorized” response and does not receive a “Proxy-Authenticate” header.

From
not
not
per RFC 2068. Because RFC recommends sending this header only with the user’s approval, it is not very useful

Host
must
must
per RFC 2068

If-Match
not
not

If-Modified-Since
not
not

If-None-Match
not
not

If-Range
not
not

If-Unmodified-Since
not
not

Max-Forwards
not
not

Proxy-Authorization
must-if
not
per RFC 2068. A client MUST send this header when it receives a 401 “Unauthorized” response and a “Proxy-Authenticate” header.

Range
not
not

Referer
not
not

User-Agent
not
not

3.3 Response Headers

The following is a table for the request headers.

Response-Header
Server
Client
Response Values and Conditions

Accept-Ranges
not
not

Age
not
not

Location
must-if
may
per RFC 2068. When URI needs redirection.

Proxy-Authenticate
not
must
per RFC 2068

Public
may
may
per RFC 2068

Retry-After
may
may
per RFC 2068

Server
not
not

Vary
not
not

Warning
may
may
per RFC 2068

WWW-Authenticate
must-if
must
per RFC 2068. When a server needs to authenticate a client.

3.4 Entity Headers

The following is a table for the entity headers.

Entity-Header
Request
Response
Values and Conditions

Client
Server
Server
Client

Allow
not
not
not
not

Content-Base
not
not
not
not

Content-Encoding
may
must
must
must
per RFC 2068 and IANA registry for content codings.

Content-Language
not
not
not
not
Application/ipp handles language

Content-Length
must-if
must
must-if
must
the length of the message-body per RFC 2068. Header MUST be present if Transfer-Encoding is absent..

Content-Location
not
not
not
not

Content-MD5
may
may
may
may
per RFC 2068

Content-Range
not
not
not
not

Content-Type
must
must
must
must
“application/ipp” only

ETag
not
not
not
not

Expires
not
not
not
not

Last-Modified
not
not
not
not

4. Security Considerations

The IPP Model document defines an IPP implementation with “privacy” as one that implements Transport Layer Security (TLS) Version 1.0. TLS meets the requirements for IPP security with regards to features such as mutual authentication and privacy (via encryption). The IPP Model document also outlines IPP-specific security considerations and should be the primary reference for security implications with regards to the IPP protocol itself.

The IPP Model document defines an IPP implementation with “authentication” as one that implements the standard way for transporting IPP messages within HTTP 1.1. , These include the security considerations outlined in the HTTP 1.1 standard document [rfc2068] and Digest Authentication extension [rfc2069]..

The current HTTP infrastructure supports HTTP over TCP port 80. IPP server implementations MUST offer IPP services using HTTP over the IANA assigned Well Known Port 631 (the IPP default port). IPP server implementations may support other ports, in addition to this port..

See further discussion of IPP security concepts in the model document

5. References

[rfc822]

Crocker, D., "Standard for the Format of ARPA Internet Text Messages", RFC 822, August 1982.

[rfc1123]
Braden, S., "Requirements for Internet Hosts - Application and Support", RFC 1123, October, 1989,

[rfc1179]
McLaughlin, L. III, (editor), "Line Printer Daemon Protocol" RFC 1179, August 1990.

[rfc1630]
T. Berners-Lee, “Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression of Names and Addresses of Objects on the Network as used in the Word-Wide Web”, RFC 1630, June 1994.

[rfc1759]
Smith, R., Wright, F., Hastings, T., Zilles, S., and Gyllenskog, J., "Printer MIB", RFC 1759, March 1995.

[rfc1738]
Berners-Lee, T., Masinter, L., McCahill, M. , "Uniform Resource Locators (URL)", RFC 1738, December, 1994.

[rfc1543]
Postel, J., "Instructions to RFC Authors", RFC 1543, October 1993.

[rfc1766]
H. Alvestrand, " Tags for the Identification of Languages", RFC 1766, March 1995.

[rfc1808] R. Fielding, “Relative Uniform Resource Locators”, RFC1808, June 1995 [rfc1903}
J. Case, et al. “Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)”, RFC 1903, January 1996.

[rfc2046]
N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. November 1996. (Obsoletes RFC1521, RFC1522, RFC1590), RFC 2046.

[rfc2048]
N. Freed, J. Klensin & J. Postel. Multipurpose Internet Mail Extension (MIME) Part Four: Registration Procedures. November 1996. (Format: TXT=45033 bytes) (Obsoletes RFC1521, RFC1522, RFC1590) (Also BCP0013), RFC 2048.

[rfc2068]
R Fielding, et al, “Hypertext Transfer Protocol – HTTP/1.1” RFC 2068, January 1997

[rfc2069]
J. Franks, et al, “An Extension to HTTP: Digest Access Authentication” RFC 2069, January 1997

[rfc2119]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119 , March 1997

[rfc2184]
N. Freed, K. Moore, “MIME Parameter Value and Encoded Word Extensions: Character Sets, Languages, and Continuations”, RFC 2184, August 1997,

[rfc2234]
D. Crocker et al., “Augmented BNF for Syntax Specifications: ABNF”, RFC 2234. November 1997.

[char]
N. Freed, J. Postel: IANA Charset Registration Procedures, Work in Progress (draft-freed-charset-reg-02.txt).

[dpa]
ISO/IEC 10175 Document Printing Application (DPA), June 1996.

[iana]
IANA Registry of Coded Character Sets: ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

[ipp-lpd]
Herriot, R., Hastings, T., Jacobs, N., Martin, J., “Mapping between LPD and IPP Protocols”, draft-ietf-ipp-lpd-ipp-map-04.txt, June 1998.

[ipp-mod]
Isaacson, S., deBry, R., Hastings, T., Herriot, R., Powell, P., “Internet Printing Protocol/1.0: Model and Semantics” draft-ietf-ipp-mod-10.txt, June, 1998.

[ipp-pro]
Herriot, R., Butler, S., Moore, P., Tuner, R., “Internet Printing Protocol/1.0: Encoding and Transport”, draft-ietf-ipp-pro-06.txt, June, 1998.

[ipp-rat]
Zilles, S., “Rationale for the Structure and Model and Protocol for the Internet Printing Protocol”, draft-ietf-ipp-rat-03.txt, June, 1998.

[ipp-req]
Wright, D., "Design Goals for an Internet Printing Protocol", draft-ietf-ipp-req-02.txt, June, 1998.

6. Author's Address

Robert Herriot (editor)
Paul Moore

Sun Microsystems Inc.
Microsoft

901 San Antonio Road, MPK-17
One Microsoft Way

Palo Alto, CA 94303
Redmond, WA 98053

Phone: 650-786-8995
Phone: 425-936-0908

Fax:
 650-786-7077
Fax: 425-93MS-FAX

Email: robert.herriot@eng.sun.com
Email: paulmo@microsoft.com

Sylvan Butler
Randy Turner

Hewlett-Packard
Sharp Laboratories

11311 Chinden Blvd.
5750 NW Pacific Rim Blvd

Boise, ID 83714
Camas, WA 98607

Phone: 208-396-6000
Phone: 360-817-8456

Fax:
 208-396-3457
Fax: : 360-817-8436

Email: sbutler@boi.hp.com
Email: rturner@sharplabs.com

IPP Mailing List: ipp@pwg.org

IPP Mailing List Subscription: ipp-request@pwg.org

IPP Web Page: http://www.pwg.org/ipp/

7. Other Participants:

Chuck Adams - Tektronix
Harry Lewis - IBM

Ron Bergman - Dataproducts
Tony Liao - Vivid Image

Keith Carter - IBM
David Manchala - Xerox

Angelo Caruso - Xerox
Carl-Uno Manros - Xerox

Jeff Copeland - QMS
Jay Martin - Underscore

Roger Debry - IBM
Larry Masinter - Xerox

Lee Farrell - Canon
Ira McDonald, Xerox

Sue Gleeson - Digital
Bob Pentecost - Hewlett-Packard

Charles Gordon - Osicom
Patrick Powell - SDSU

Brian Grimshaw - Apple
Jeff Rackowitz - Intermec

Jerry Hadsell - IBM
Xavier Riley - Xerox

Richard Hart - Digital
Gary Roberts - Ricoh

Tom Hastings - Xerox
Stuart Rowley - Kyocera

Stephen Holmstead
Richard Schneider - Epson

Zhi-Hong Huang - Zenographics
Shigern Ueda - Canon

Scott Isaacson - Novell
Bob Von Andel - Allegro Software

Rich Lomicka - Digital
William Wagner - Digital Products

David Kellerman - Northlake Software
Jasper Wong - Xionics

Robert Kline - TrueSpectra
Don Wright - Lexmark

Dave Kuntz - Hewlett-Packard
Rick Yardumian - Xerox

Takami Kurono - Brother
Lloyd Young - Lexmark

Rich Landau - Digital
Peter Zehler - Xerox

Greg LeClair - Epson
Frank Zhao - Panasonic

Steve Zilles - Adobe

8. Appendix A: Protocol Examples

8.1 Print-Job Request

The following is an example of a Print-Job request with job-name, copies, and sides specified.

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0002
Print-Job
operation-id

0x00000001
1
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x45
uri type
value-tag

0x000B

name-length

printer-uri
printer-uri
name

0x001A

value-length

http://forest:631/pinetree
printer pinetree
value

0x42
nameWithoutLanguage type
value-tag

0x0008

name-length

job-name
job-name
name

0x0006

value-length

foobar
foobar
value

0x02
start job-attributes
job-attributes-tag

0x21
integer type
value-tag

0x0005

name-length

copies
copies
name

0x0004

value-length

0x00000014
20
value

0x44
keyword type
value-tag

0x0005

name-length

sides
sides
name

0x0013

value-length

two-sided-long-edge
two-sided-long-edge
value

0x03
end-of-attributes
end-of-attributes-tag

%!PS...
<PostScript>
data

8.2 Print-Job Response (successful)

Here is an example of a Print-Job response which is successful:

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0000
OK (successful)
status-code

0x00000001
1
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x41
textWithoutLanguage type
value-tag

0x000E

name-length

status-message
status-message
name

0x0002

value-length

OK
OK
value

0x02
start job-attributes
job-attributes-tag

0x21
integer
value-tag

0x0007

name-length

job-id
job-id
name

0x0004

value-length

147
147
value

0x45
uri type
value-tag

0x0008

name-length

job-uri
job-uri
name

0x001E

value-length

http://forest:631/pinetree/123
job 123 on pinetree
value

0x25
nameWithoutLanguage type
value-tag

0x0008

name-length

job-state
job-state
name

0x0001

value-length

0x03
pending
value

0x03
end-of-attributes
end-of-attributes-tag

8.3 Print-Job Response (failure)

Here is an example of a Print-Job response which fails because the printer does not support sides and because the value 20 for copies is not supported:

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0400
client-error-bad-request
status-code

0x00000001
1
request-id

0x01
start operation-attributes
operation-attribute tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x41
textWithoutLanguage type
value-tag

0x000E

name-length

status-message
status-message
name

0x000D

value-length

bad-request
bad-request
value

0x04
start unsupported-attributes
unsupported-attributes tag

0x21
integer type
value-tag

0x000C

name-length

job-k-octets
job-k-octets
name

0x0004

value-length

0x001000000
16777216
value

0x21
integer type
value-tag

0x0005

name-length

copies
copies
name

0x0004

value-length

0x00000014
20
value

0x10
unsupported (type)
value-tag

0x0005

name-length

sides
sides
name

0x0000

value-length

0x03
end-of-attributes
end-of-attributes-tag

8.4 Print-URI Request
The following is an example of Print-URI request with copies and job-name parameters.

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0003
Print-URI
operation-id

0x00000001
1
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x45
uri type
value-tag

0x000B

name-length

printer-uri
printer-uri
name

0x001A

value-length

http://forest:631/pinetree
printer pinetree
value

0x45
uri type
value-tag

0x000A

name-length

document-uri
document-uri
name

0x11

value-length

ftp://foo.com/foo
ftp://foo.com/foo
value

0x42
nameWithoutLanguage type
value-tag

0x0008

name-length

job-name
job-name
name

0x0006

value-length

foobar
foobar
value

0x02
start job-attributes
job-attributes-tag

0x21
integer type
value-tag

0x0005

name-length

copies
copies
name

0x0004

value-length

0x00000001
1
value

0x03
end-of-attributes
end-of-attributes-tag

8.5 Create-Job Request

The following is an example of Create-Job request with no parameters and no attributes

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0005
Create-Job
operation-id

0x00000001
1
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x45
uri type
value-tag

0x000B

name-length

printer-uri
printer-uri
name

0x001A

value-length

http://forest:631/pinetree
printer pinetree
value

0x03
end-of-attributes
end-of-attributes-tag

8.6 Get-Jobs Request

The following is an example of Get-Jobs request with parameters but no attributes.

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x000A
Get-Jobs
operation-id

0x00000123
0x123
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

us-ascii
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x45
uri type
value-tag

0x000B

name-length

printer-uri
printer-uri
name

0x001A

value-length

http://forest:631/pinetree
printer pinetree
value

0x21
integer type
value-tag

0x0005

name-length

limit
limit
name

0x0004

value-length

0x00000032
50
value

0x44
keyword type
value-tag

0x0014

name-length

requested-attributes
requested-attributes
name

0x0006

value-length

job-id
job-id
value

0x44
keyword type
value-tag

0x0000
additional value
name-length

0x0008

value-length

job-name
job-name
value

0x44
keyword type
value-tag

0x0000
additional value
name-length

0x000F

value-length

document-format
document-format
value

0x03
end-of-attributes
end-of-attributes-tag

8.7 Get-Jobs Response

The following is an of Get-Jobs response from previous request with 3 jobs. The Printer returns no information about the second job.

Octets
Symbolic Value
Protocol field

0x0100
1.0
version-number

0x0000
OK (successful)
status-code

0x00000123
0x123
request-id (echoed back)

0x01
start operation-attributes
operation-attribute-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name

0x0008

value-length

ISO-8859-1
ISO-8859-1
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

en-us
en-US
value

0x41
textWithoutLanguage type
value-tag

0x000E

name-length

status-message
status-message
name

0x0002

value-length

OK
OK
value

0x02
start job-attributes (1st object)
job-attributes-tag

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name

0x0005

value-length

fr-CA
fr-CA
value

0x21
integer type
value-tag

0x0006

name-length

job-id
job-id
name

0x0004

value-length

147
147
value

0x42
nameWithoutLanguage type
value-tag

0x0008

name-length

job-name
job-name
name

0x0003

name-length

fou
fou
name

0x02
start job-attributes (2nd object)
job-attributes-tag

0x02
start job-attributes (3rd object)
job-attributes-tag

0x21
integer type
value-tag

0x0006

name-length

job-id
job-id
name

0x0004

value-length

148
148
value

0x35
nameWithLanguage
value-tag

0x0008

name-length

job-name
job-name
name

0x0012

value-length

0x0005

sub-value-length

de-CH
de-CH
value

0x0009

sub-value-length

isch guet
isch guet
name

0x03
end-of-attributes
end-of-attributes-tag

9. Appendix B: Registration of MIME Media Type Information for "application/ipp"

This appendix contains the information that IANA requires for registering a MIME media type. The information following this paragraph will be forwarded to IANA to register application/ipp whose contents are defined in Section 3 “Encoding of the Operation Layer” in this document.
MIME type name: application

MIME subtype name: ipp

A Content-Type of "application/ipp" indicates an Internet Printing Protocol message body (request or response). Currently there is one version: IPP/1.0, whose syntax is described in Section 3 “Encoding of the Operation Layer” of [ipp-pro], and whose semantics are described in [ipp-mod]

Required parameters: none

Optional parameters: none

Encoding considerations:
IPP/1.0 protocol requests/responses MAY contain long lines and ALWAYS contain binary data (for example attribute value lengths).

Security considerations:
IPP/1.0 protocol requests/responses do not introduce any security risks not already inherent in the underlying transport protocols. Protocol mixed-version interworking rules in [ipp-mod] as well as protocol encoding rules in [ipp-pro] are complete and unambiguous.

Interoperability considerations:
IPP/1.0 requests (generated by clients) and responses (generated by servers) MUST comply with all conformance requirements imposed by the normative specifications [ipp-mod] and [ipp-pro]. Protocol encoding rules specified in [ipp-pro] are comprehensive, so that interoperability between conforming implementations is guaranteed (although support for specific optional features is not ensured). Both the "charset" and "natural-language" of all IPP/1.0 attribute values which are a LOCALIZED-STRING are explicit within IPP protocol requests/responses (without recourse to any external information in HTTP, SMTP, or other message transport headers).

Published specification:
[ipp-mod]
Isaacson, S., deBry, R., Hastings, T., Herriot, R., Powell, P., “Internet Printing Protocol/1.0: Model and Semantics” draft-ietf-ipp-mod-10.txt, June, 1998.

[ipp-pro]
Herriot, R., Butler, S., Moore, P., Tuner, R., “Internet Printing Protocol/1.0: Encoding and Transport”, draft-ietf-ipp-pro-06.txt, June, 1998.

Applications which use this media type:
Internet Printing Protocol (IPP) print clients and print servers, communicating using HTTP/1.1 (see [IPP-PRO]), SMTP/ESMTP, FTP, or other transport protocol. Messages of type "application/ipp" are self-contained and transport-independent, including "charset" and "natural-language" context for any LOCALIZED-STRING value.

Person & email address to contact for further information:
Scott A. Isaacson

Novell, Inc.

122 E 1700 S

Provo, UT 84606

Phone: 801-861-7366

Fax: 801-861-4025

Email: sisaacson@novell.com

or

Robert Herriot

Sun Microsystems Inc.

901 San Antonio Road, MPK-17

Palo Alto, CA 94303

Phone: 650-786-8995

Fax: 650-786-7077

Email: robert.herriot@eng.sun.com

Intended usage:

COMMON

10. Appendix C: Full Copyright Statement

Copyright (C)The Internet Society (1998). All Rights Reserved

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Herriot, Butler,
June 30_, 1998,
[Page 1]
Moore and Turner
Expires December 30, 1998

Herriot, Butler,
June 30, 1998,
[Page 32]
Moore and Turner
Expires Decembe_r 30, 1998

