SUBJECT: 6 ISSUES with IPP Notification specs

Date: 7/17/01

File: notification-clarifications.doc

There have been a number of issues (some changes and some clarifications) of the IPP Notification Specification and mostly the ippget Delivery Method spec. This note is an attempt to summarize them and indicate support so far for each. The summary of the 6 issues are:

1A. Base Notification Spec: Clarify that the Printer MAY send Event Notifications in any order.

1B. Base Notification Spec: Clarify that the Printer MUST send Event Notifications for any given Subscription Object in time stamp order, but MAY interleave Event Notifications from other Subscription Objects

2. IPPGET spec: Get-Notification matching “notify-recipients-uri” with Subscription objects: octet-by-octet versus URI matching rules. (IPPGET currently says both).

3. IPPGET spec: In a Get-Notifications response when the client has requested the wait mode (persistent operation), allow a Printer to return the unexpired Notification Events, but also indicate to the client to please disconnect and try again at the indicate interval (“suggested-ask-again-time-interval”). (IPPGET currently only allows the interval to be returned if the client didn’t ask for wait mode or if the Printer is too busy to return any Notification Events).

4A. IPPGET spec: Clarify that the Get-Notifications operation is for querying any kind of unexpired Events, not just ippget Events. Thus the “notify-recipients-uri” operation attribute can match any Subscription object including the scheme. Also all Events have a life time, not just ippget Events, if the Printer supports Get-Notifications (which requires ippget scheme at least).

4B. IPPGET spec: Same as 4a, but make it OPTIONAL for a Printer to support other schemes with Get-Notifications.

5. IPPGET spec: Change the sense of the Get-Notifications “notify-no-wait” (boolean) operation attribute to a positive “persistent-operation” (boolean), so that omitted and ‘false’ mean the easier non-persistent operation.

6. IPPGET spec: Rename some attributes but keep the same semantics:

“notify-ippget-redirect” (uri) to “notify-redirect-uri” (uri),

“suggested-ask-again-time-interval” (integer(0:MAX)) to “notify-get-interval”, and

“begin-to-expire-time-interval” (integer(0:MAX)) to “event-life-time” (integer(0:MAX)).

I’ve talked with the following folks individually about the above and have the following positions (blank means they weren’t asked):

ISSUE HL IM BH TH MJ TT CM MS

1A.Clarify no Event ordering Y N Y N Y N N

1B.Events MUST be ordered by SO N Y Y N Y Y

2. URI match rules Y Y Y Y N Y Y

3. Printer suggest disconnect Y Y Y Y Y Y

4A.Poll for any scheme N Y N N N N N

4B.Poll for any scheme OPTIONALLY N Y N Y N

5. change wait sense Y Y Y N Y Y

6. rename some attributes Y Y N N N Y N Y

Now comes the detailed discussion and the actual text change for each proposal:

1. Notification spec [ipp-ntfy]: General comments about ordering:

a. We need to say something about the ordering of Event Notifications as sent by the Printer, both for separate Event Notifications and within Compound Event Notifications.

2. We also need to say that depending on the underlying transport, the order received of separate Event Notifications by a Notification Recipient MAY be different.

3. ippget and mailto don't even mention Compound Event Notifications, so we need to update the text and refer back to [ipp-ntfy] for all three delivery methods for the ordering requirements. See the proposed text below.

There are two alternatives: 1A: No ordering requirements and 1B: ordered by time stamp for each Subscription object, whether interleaved or not.

Discussion: Most Notification standards require time sequencing. Requiring the Printer to order by time stamp for each Subscription object, but allowing interleaving, is not a burden on the Printer and allows simple clients to deal with events without having to sort. Complicated accounting clients may still have to sort.

1A. Base Notification Spec: Clarify that the Printer MAY send Event Notifications in any order.

For the Base Event Notifications spec [ipp-ntfy] section 9 after paragraph 2 add the following text:

Printer Event Sending Algorithm:

When a Printer processes multiple pending Events, the Printer MAY send the Event Notifications in any order. There is no requirement that they be sent in time stamp order, i.e., there is no requirement that they be sent in the order of increasing "printer-up-time" attribute value in the Event Notification (see Table 5). Notification Recipients MUST accept the Event Notifications in any order.

There is no need to add any text to any of the Delivery Methods.

1B. Base Notification Spec: Clarify that the Printer MUST send Event Notifications for any given Subscription Object in time stamp order, but MAY interleave Event Notifications from other Subscription Objects. Notification Delivery Method documents refer to the Base Spec for ordering.

For the Base Event Notifications spec [ipp-ntfy] section 9 after paragraph 2 add all of the following text:

Printer Event Sending Algorithm:

When a Printer processes multiple pending Events, the Printer MUST send Event Notifications in one of the following orders, whether as multiple separate Event Notifications or together in a single Compound Event Notification:

a) The Event Notifications are grouped by the Subscription Object from which the Event Notifications are generated. Within each such grouping, the Event Notifications are in time stamp order, i.e., in order of increasing "printer-up-time" attribute value in the Event Notification (see Table 5). Between such groupings, the order of Event Notifications is IMPLEMENTATION DEPENDENT.

OR

b) The Event Notifications are in time stamp order (order of increasing "printer-up-time" attribute value), even when generated from multiple Subscription Objects.

Note that with either variant a) or variant b) of the Printer Event Sending Algorithm, the Printer always sends the Event Notifications generated from a given Subscription Object in time stamp order, even when the Printer sends intervening Event Notifications generated by other Subscription objects. If a Subscribing Client wants to ensure that the Printer sends certain Event Notifications in time stamp order, the Subscribing Client must ensure that the subscription for the Events are in the same Subscription Object. Even so, depending on the underlying transport, the actual order that a Notification Recipient receives separate Event Notifications MAY differ from the order sent by the Printer.
A variant wording which is shorter and has examples is the following:
Printer Event Sending Ordering:

When a Printer sends Event Notifications, the Event Notifications from any given Subscription Object MUST be in time stamp order, i.e., in order of increasing "printer-up-time" attribute value in the Event Notification (see Table 5). These Event Notifications MAY be interleaved with those from other Subscription Objects, as long as those others are also in time stamp order. The Printer MUST observe these ordering requirements whether sending multiple pending Events as multiple separate Event Notifications or together in a single Compound Event Notification.
If a Subscribing Client wants the Printer to send certain Event Notifications in time stamp order, the Subscribing Client ensures that the subscription for the Events are in the same Subscription Object. Even so, depending on the underlying transport, the actual order that a Notification Recipient receives separate Event Notifications MAY differ from the order sent by the Printer.
Example: Consider two Per-Printer Subscription Objects: SO1 and SO2. SO1 requests ‘job-state-changed’ events and SO2 requests ‘printer-state-changed’ events. The number in parens is the time stamp. Any of the following Event Notification sequences conform to the ordering requirements for the Printer to send the Notification Events:

(a) ‘job-created’ (1000), ‘job-stopped’ (1005), ‘job-completed’ (1009), ‘printer-stopped (1005)’

(b) ‘job-created’ (1000), ‘job-stopped’ (1005), ‘printer-stopped’ (1005), ‘job-completed (1009)’

(c) ‘job-created’ (1000), ‘printer-stopped’ (1005), ‘job-stopped’ (1005), ‘job-completed (1009)’
Examples (b) and (c) are interleaved, (a) is not.
IPPGET:

Make the following changes to the first paragraph in the Get-Notifications Response, section 5.2 (I put [] around new text, but deleted old text without indication):

Group 3 through N: Event Notification Attributes

The Printer responds with one Event Notification Attributes Group per matched Event Notification. [The entire response is considered a single Compound Event Notification (see [ipp-ntfy]).] The initial matched Event Notifications are all un-expired Event Notifications associated with the matched Subscription Objects [and MUST follow the ordering requirements for Event Notifications within a Compound Event Notification specified for the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9].

If the Notification Recipient has selected the option to wait for additional Event Notifications [(the “notify-no-wait” attribute was set to ‘false’ or was omitted)], the Printer {sends} subsequent Event Notifications in the response [each time it processes additional Events]. [Each time the Printer sends such Event Notifications, their ordering MUST be the ordering specified for the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9.]

[Note: If a Notification Recipient performs two consecutive Get-Notifications operations, the time stamp of the first Event Notification in the second Get-Notifications Response may be less than the time stamp of the last Event Notification in the first Get-Notification Response. This happens because the Printer sends all unexpired Event Notification according to the ordering specified in [ipp-ntfy] and some Event Notifications from the first Get-Notifications operation may not have expired by the time the second Get-Notifications operation occurs.]

INDP:

In INDP section 8.1 Send-Notifications Request, 2nd paragraph (I put [] around the new text):

The Printer composes the information defined for an IPP Notification [ipp-ntfy] and sends it using the Send-Notifications operation to the Notification Recipient supplied in the Subscription object. [The ordering of separate Send-Notifications operations that a Printer sends MUST be the ordering specified for the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9.]

In INDP section 8.1.1 Send-Notifications Request (I put [] around the new text):

Group 2 to N: Event Notification Attributes

In each group 2 to N, each attribute is encoded using the IPP rules for encoding attributes [RFC2910] and [the attributes within a group] MAY be encoded in any order. [The entire request is considered a single Compound Event Notification and MUST follow the ordering requirements for Event Notifications within a Compound Event Notification specified for the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9.] Note: the Get-Jobs response in [RFC2911] acts as a model for encoding multiple groups of attributes.

MAILTO:

MAILTO section 6, add the following after the existing 2nd paragraph:

While the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9 specifies ordering requirements for Printers when sending separate Event Notifications, email messages are not guaranteed to arrive in the order sent so that the Notification Recipient may not receive them in the same order.

MAILTO section 6 Event Notification Content, right before section 6.1 (I put [] around the new text):

The Event Notification content has two parts, the headers and the message body. The headers precede the message body and are separated by a blank line (see [RFC 822]).

[A Printer implementation MAY combine several Event Notifications into a single email message body. Such an email message is considered a single Compound Event Notification and MUST follow the ordering requirements for Event Notifications within a Compound Event Notification specified for the "Printer Event Sending Algorithm" in [ipp-ntfy] section 9.]

2. IPPGET spec: Get-Notification matching “notify-recipients-uri” with Subscription objects: octet-by-octet versus URI matching rules. (IPPGET currently says both).

Discussion: PRO: Its needed in order to get our ippget scheme accepted by the IETF and is more user friendly, in case a different human is supplying the Notification Recipient URI than the Subscribing Client. CON: Its harder to implement. REBUTTAL: Most platforms have a compare URI routine.

Change IPPGET Section 5.1 from:

“notify-recipient-uri” (url):

The client MUST supply this attribute. The Printer object MUST support this attribute. The Printer matches the value of this attribute (byte for byte with no case conversion) against the value of the “notify-recipient-uri” in each Subscription Object in the Printer. If there are no matches, the IPP Printer MUST return the ‘client-error-not-found’ status code.

to:

“notify-recipient-uri” (url):

The client MUST supply this attribute. The Printer object MUST support this attribute. The Printer matches the value of this attribute against the value of the “notify-recipient-uri” in each Subscription Object in the Printer following the normal URI comparison rules (see section 9.5.2). If there are no matches, the IPP Printer MUST return the ‘client-error-not-found’ status code.

3. IPPGET spec: In a Get-Notifications response when the client has requested the wait mode (persistent operation), allow a Printer to return the unexpired Notification Events, but also indicate to the client to please disconnect and try again at the indicate interval (“suggested-ask-again-time-interval”). (IPPGET currently only allows the interval to be returned if the client didn’t ask for wait mode or if the Printer is too busy to return any Notification Events).

Discussion: PRO: For simple Printers, especially IPPFAX, this allows them not to have to support unlimited numbers of connections with the REQUIRED ippget Delivery Method. CON: Another thing for the client to check. REBUTTAL: but the client needs to check this anyway.

Change section 5.2:

“suggested-ask-again-time-interval” (integer(0:MAX)):

The value of this attribute is the number of seconds that the Notification Recipient SHOULD wait before trying this operation again when

a) the Printer returns the ‘server-error-busy’ status code OR

b) the Printer returns the ‘successful-ok’ status code and the client supplied the “notify-no-wait” attribute with a value of ‘true’.

This value is intended to help the client be a good network citizen.

to:

“suggested-ask-again-time-interval” (integer(0:MAX)):

The value of this attribute is the number of seconds that the Notification Recipient SHOULD wait before trying this operation again when

a) the Printer returns the ‘server-error-busy’ status code OR

b) the Printer returns the ‘successful-ok’ status code and the client supplied the “notify-no-wait” attribute with a value of ‘true’ (the no wait case).

c) the Printer returns the ‘successful-ok’ status code and the client supplied the “notify-no-wait” attribute with either ‘false’ value or omitted the attribute all together (the wait case) and the Printer wants the client to disconnect, instead of staying connected. The client MUST accept this response and MUST disconnect. If the client does not disconnect, the Printer SHOULD do so. The Printer returns this attribute for this case only if the implementation does not want to keep the connection open at this time. If the Printer wants the client to keep the connection open, then the Printer MUST NOT return this attribute in the response.

This value is intended to help the client be a good network citizen.

4A. IPPGET spec: Clarify that the Get-Notifications operation is for querying any kind of unexpired Events, not just ippget Events. Thus the “notify-recipients-uri” operation attribute can match any Subscription object including the scheme. Also all Events have a life time, not just ippget Events, if the Printer supports Get-Notifications (which requires ippget scheme at least).

Discussion: PRO: Other notification mechanisms, like SNMP, have both polling and traps for the same events. Also the client supplies a fully general “notify-recipient-uri” operation attribute in the Get-Notifications operation. CON: Its more complications and not that useful with our INDP and mailto methods.

Add to IPPGET section 5.1, Get Notifications Request, “notify-recipient-uri” (uri) operation attribute:

The Printer MUST accept this request for any URI scheme that it supports for Notification, not just the ‘ippget’ scheme, i.e., for any value of the Printer’s “notify-schemes-supported” Printer Description attribute. If the URI scheme is not among the values of the Printer’s “notify-schemes-supported” Printer Description attribute, the Printer rejects the request and returns the ‘client-error-uri-scheme-not-supported’ status code.

Change Section 7.3 begin-to-expire-time-interval (integer(0:MAX)) from:

This Printer Description attribute specifies the number of seconds that a Printer keeps an Event Notification that is associated with the ‘ippget’ Delivery Method.

The Printer MUST support this attribute if it supports the ‘ippget’ Delivery Method.

The value of this attribute is the minimum number of seconds that MUST elapse between the time the Printer creates an Event Notification object for the ‘ippget’ Delivery Method and the time the Printer discards the same Event Notification.

to:

This Printer Description attribute specifies the number of seconds that a Printer keeps an Event Notification that is associated with any Delivery Method.

The Printer MUST support this attribute if it supports the ‘ippget’ Delivery Method or the Get-Notifications operation.

The value of this attribute is the minimum number of seconds that MUST elapse between the time the Printer creates an Event Notification object for any Delivery Method and the time the Printer discards the same Event Notification.

4B. IPPGET spec: Same as 4a, but make it OPTIONAL for a Printer to support other schemes with Get-Notifications.

Discussion: PRO: Other notification mechanisms, like SNMP, have both polling and traps for the same events. Also the client supplies a fully general “notify-recipient-uri” operation attribute in the Get-Notifications operation. CON: Its more complications and not that useful with our INDP and mailto methods AND its another interoperability OPTION, thereby reducing the chances that a client would both supporting it.

Add to IPPGET section 5.1, Get Notifications Request, “notify-recipient-uri” (uri) operation attribute:

The Printer MUST accept this request for any URI scheme that it supports for use with the Get-Notifications operation, not just the ‘ippget’ scheme, i.e., for any value of the Printer’s “notify-schemes-supported” Printer Description attribute for which the Printer supports the Get-Notifications operation. If the URI scheme is not one of the values that the Printer supports for the Get-Notifications operation, the Printer rejects the request and returns the ‘client-error-uri-scheme-not-supported’ status code.

Change Section 7.3 begin-to-expire-time-interval (integer(0:MAX)) from:

This Printer Description attribute specifies the number of seconds that a Printer keeps an Event Notification that is associated with the ‘ippget’ Delivery Method.

The Printer MUST support this attribute if it supports the ‘ippget’ Delivery Method.

The value of this attribute is the minimum number of seconds that MUST elapse between the time the Printer creates an Event Notification object for the ‘ippget’ Delivery Method and the time the Printer discards the same Event Notification.

to:

This Printer Description attribute specifies the number of seconds that a Printer keeps an Event Notification that is associated with any Delivery Method for which it supports the Get-Notifications operation.

The Printer MUST support this attribute if it supports the ‘ippget’ Delivery Method or the Get-Notifications operation.

The value of this attribute is the minimum number of seconds that MUST elapse between the time the Printer creates an Event Notification object for any Delivery Method for which it supports the Get-Notifications operation and the time the Printer discards the same Event Notification.

5. IPPGET spec: Change the sense of the Get-Notifications “notify-no-wait” (boolean) operation attribute to a positive “persistent-operation” (boolean), so that omitted and ‘false’ mean the easier non-persistent operation.

Discussion: PRO: Boolean attributes should be names with positive names, else they are likely to be mis-implemented. The harder, more unusual value should be the ‘true’ and the normal, easier value should be ‘false’ or omitted, i.e., the default behavior. CON: This will affect any implementations not currently participating in the discussion and our chair may require us to do another WG Last Call, thereby further delaying our getting the IPPGET spec out (though its still in the AD’s queue).

Change section 5.1, “notify-no-wait” (boolean) from:

“notify-no-wait” (boolean):

The client MAY supply this attribute. The Printer object MUST support this attribute. If the value of this attribute is ‘false’, the Printer MUST send all un-expired Event Notifications (as defined in the previous attribute) and it MUST continue to send responses for as long as the Subscription Objects associated with the specified “notify-recipient-uri” continue to exist. If the value of this attribute is ‘true’, the Printer MUST send all un-expired Event Notifications (as defined in the previous attribute) and the Printer MUST conclude the operation without waiting for any additional Events to occur. If the client doesn’t supply this attribute, the Printer MUST behave as if the client had supplied this attribute with the value of ‘false’.

to:

“persistent-operation” (boolean):

The client MAY supply this attribute. The Printer object MUST support this attribute. If the value of this attribute is ‘false’ or omitted, the Printer MUST send all un-expired Event Notifications (as defined in the previous attribute) and the Printer MUST conclude the operation without waiting for any additional Events to occur. If the value of this attribute is ‘true’, the Printer MUST send all un-expired Event Notifications (as defined in the previous attribute) and it MUST continue to send responses for as long as the Subscription Objects associated with the specified “notify-recipient-uri” continue to exist.

6. IPPGET spec: Rename some attributes but keep the same semantics:

“notify-ippget-redirect” (uri) to “notify-redirect-uri” (uri),

“suggested-ask-again-time-interval” (integer(0:MAX)) to “notify-get-interval”, and

“begin-to-expire-time-interval” (integer(0:MAX)) to “event-life-time” (integer(0:MAX)).

Discussion: CON for all 3 changes: This will affect any implementations not currently participating in the discussion and our chair may require us to do another WG Last Call, thereby further delaying our getting the IPPGET spec out (though its still in the AD’s queue).

PRO: The “notify-ippget-redirect” doesn’t have “uri” in the name, like all our other IPP attribute names. Also while the attribute is restricted to the Get-Notifications operation (and maybe ippget), it could in principle be used with other operations, so the “ippget” should be dropped from the name.

PRO: The “suggested-ask-again-time-interval” is too long and doesn’t have anything about notification in the name.

PRO: The “begin-to-expire-time-interval” is too long and doesn’t have anything about events in the name. Also “life-time” is a common term for this interval.

