

Agenda

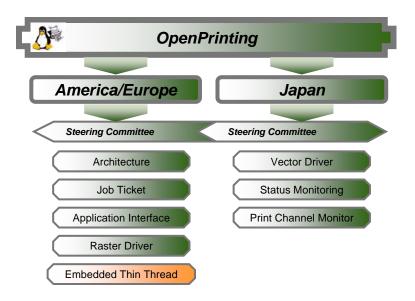
- Introduction
 - Me to Open Printing
- Printing Environments
 - Production to Embedded
- Coherence
 - Environments to Software
- Scalability
 - Environments to Software
- Models
 - Production to Embedded
- Software
 - Basic to Core to Thin-Thread to Solution
- Where are we ...
 - Architecture to Thin-Threads
- Where are we going ...
 - Thin-Threads to Solutions

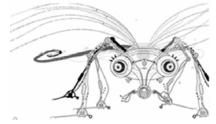
Introduction

- About Me
- Overview
 - Open Printing History
 - Open Printing Application Programming Interfaces
 - Going Forward

Introduction: About Me

- Glen W. Petrie
 - Printing/Print Work Experience
 - Epson Portland, Inc.: Senior Software Architecture / Principle Engineer
 - Linux, WinCE and Embedded Core Drivers and Solutions for Consumer Inkjet Printers
 - Xerox PARC: Principle Scientist/Engineering
 - Production and Large Office Printing Architectures.
 - Data Glyph Technology Architecture, Design and Development.
 - » Production, Office and Embedded Solutions
 - Open Printing Background
 - Was there on the first day in San Jose on Oct 25-26, 2001
 - Member of the Open Printing
 - Steering Committee,
 - Architecture Team,
 - Job Ticketing Working Group and
 - Raster Driver Working Group
 - Currently the Designer and Developer for the
 - Open Printing Embedded Print Solution


Introduction: Open Printing


- The first Print Summit Meeting in San Jose, California on Oct 25-26, 2001
- Objective
 - "Standardizing on a Scalable Print Environment in Linux."
- Mission Statement

 The mission of the Open-Printing is to develop and promote a set of standards

 that will address the needs of
 embedded to desktop to enterprise-ready printing;

 including
 management, reliability, security, scalability, printer feature access and network accessibility.

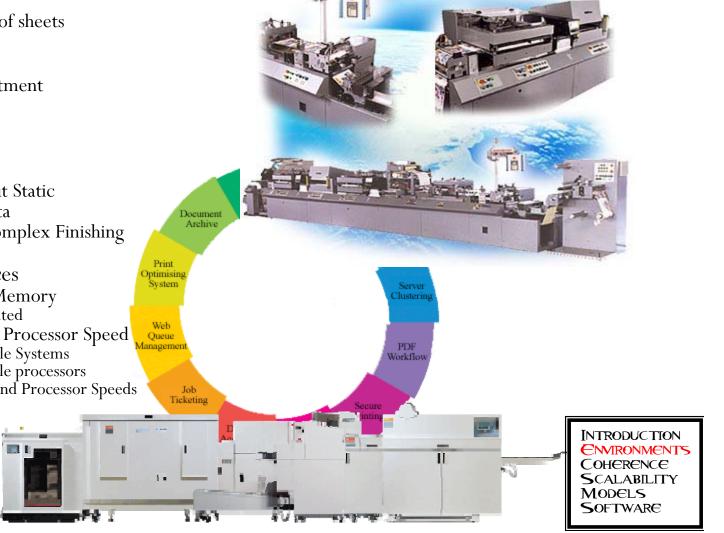
Environments

- We identify four principle Printing Environments
 - Production Printing
 - Office Printing
 - Home Printing
 - Embedded Printing
- Within each of these we can ...
 - ... define a continuum of sub-environments
 - ... define distinct niche sub-environments

ENTRONMENTS COHERENCE SCALABILITY MODELS SOFTWARE

Environment Factors

Printing Technology

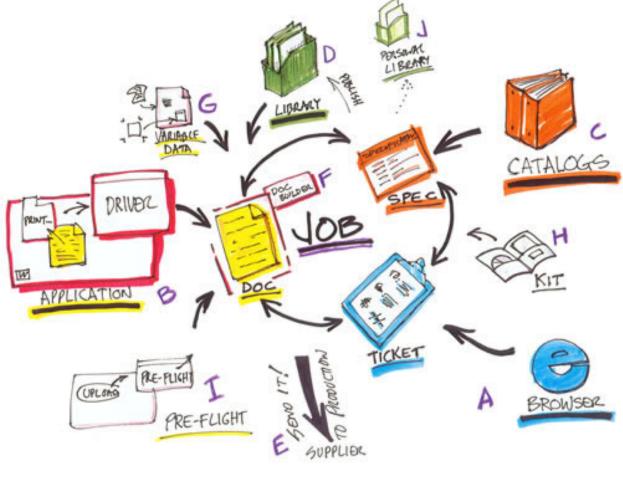

- What factors distinguish Printing Environments
 - Print Volume
 - 1 to 10's of sheets
 - 10's to 100's of sheets
 - 1000's of sheets
 - Print Location
 - Attached Printer
 - Network Printer
 - Print Department
 - Print Shop

- Print Job Type
 - Simple
 - Complex but Static
 - Variable Data
- System Resources
 - Run-Time Memory
 - Processor Speed

Production Environment

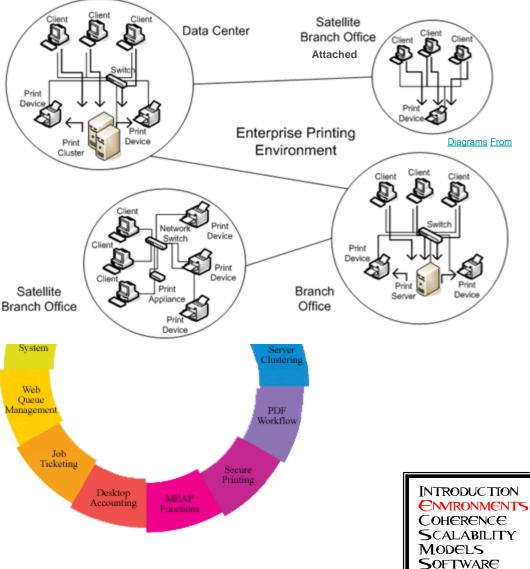
- Factors •
 - Print Volume
 - 1 to 1000's of sheets
 - Print Location ____
 - Print Department
 - Print Shop
 - Print Job Type ____
 - Simple
 - Complex but Static
 - Variable Data
 - Simple / Complex Finishing
 - System Resources
 - Run-Time Memory
 - Unlimited
 - Processors/ Processor Speed
 - Multiple Systems
 - Multiple processors
 - High End Processor Speeds

Production Environment

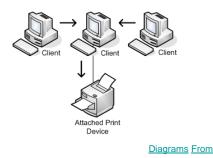

• The Real World !!!

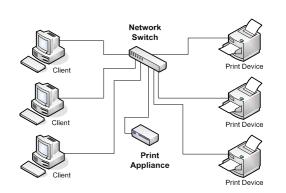
INTRODUCTION CNMRONMENTS COHERENCE SCALABILITY MODELS SOFTWARE

Production Environment


• The Real Process !!!

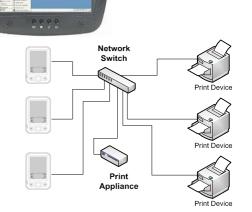
INTRODUCTION COMERENCE SCALABILITY MODELS SOFTWARE


Office Environment


- Factors
 - Print Volume
 - 1 to 100's of sheets
 - Print Location
 - Network Printer
 - Attached Printer
 - Print Job Type
 - Simple
 - Complex but Static
 - Simple Finishing
 - System Resources
 - Run-Time Memory
 - Not ConstrainedProcessors/ Processor Speed
 - Single or More Systems
 - Single or More Processor
 - Not Speed Constrained

Home Environment

- Factors
 - Print Volume
 - 1 to 10's of sheets
 - Print Location
 - Home Network Printer
 - Attached Printer
 - Print Job Type
 - Simple
 - System Resources
 - Run-Time Memory
 - Not Constrained
 - Processors/ Processor Speed
 - Single Systems
 - Single Processor
 - Not Speed Constrained


fille:

Embedded/Handheld Environment

- Factors
 - Print Volume
 - 1 to 10 of sheets
 - Print Location
 - Network Printer
 - Attached Printer
 - Print Job Type
 - Simple
 - System Resources
 - Run-Time Memory
 - Less than 1 MiB
 - Processors/ Processor Speed
 - Single Systems
 - Single Processor
 - Less than 500 MHz

ille

Coherence

- Environment Level
 - Means the Users in all environments can (/will/shall/should??) have the same experience.
 - Difference are mostly artificial
 - Production can request the printing a single sheet
 - Print a missing or damaged sheet
 - Handheld can request the printing of a 100 copies
 - Kinko's prints 100 set of a presentation downloaded from a customer PDA
 - » Who generated the production job-ticket !!! Could (should?) the PDA do that? Interesting
 - Use a Scaleable Approach
- Software Level
 - User Level
 - Print Dialog Common
 - Print Attributes Common representation and terminology
 - Developer Level
 - Print Attributes Common representation and terminology
 - Application Programming Interface (API) Design, Format, Calls, Error, etc.
 - Code Module Coding Style, Coding Structure, Variable Typing, etc.
 - Extension: Planning for Change Vendor, Code, Attributes, Modules

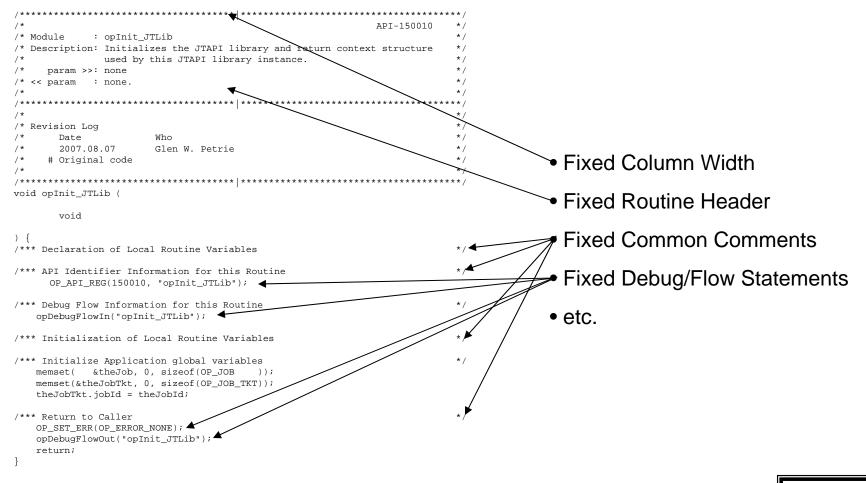
Coherence - Why

- User want consistency
 - "Printing should just work" <<< User major activity is not printing, but they need it
 - "Printing is different here!" <<< User diverted from original task
 - "That not how I wanted the print to look! What did I do different from before!?#\$?%?! <<< Now What!!!
- Application Developers need consistency
 - "Printing should just work" <<< Developer Application major function is not printing, but they support it
 - "Printing is different here!" <<< Developer needs separate print function for individual systems
 - "That not how I wanted the print to look! What did I do different from before!?#\$?%?!" <<< Now What !!!
- Printer Driver & OS Developers are expecting consistency
 - "The print attributes are defined differently here!" <<< Developer creates hash table for attributes
 - "The attributes has different units and three additional value!" <<< Developer creates a super set with hash table
 - "The objects, object data and even data types are different between the two API's <<< !#\$%\$% Now What !!!
 - On & On & On & On

INTRODUCTION ENVIRONMENTS COHERENCE SCALABILITY MODELS SOFTWARE

Coherence Needs (1)

- A Single Dictionary
 - Independent a of Environment, Print/Solution Vendor, Operating System & Application.
 - Defining Terminology, Representation, Relationships, Dependencies &, where applicable, Mathematics
 - Defining Acronyms and Abbreviations
 - Defining the Code Level Variable, Object(Struct) Membership, Range & Scope
 - Use the OpenPrinting Job Ticket Objects & Enums as the Core / Start
- Common / Extensible Print Dialog
 - Being worked on ...
 - Provides for both GUI and GUI-less API's
 - Scaleable down to Resource Limited Embedded/Handheld Solutions



Coherence Needs (2)

- Software Level
 - Application Programming Interface (API)
 - Types: Static Link Library, Dynamic Link Library, Remote Processor Call, Other ??
 - Base API's: opInit_foo, opProc_foo, opRelease_foo
 - Base Code Modules
 - Base Headers
 - Base Types (OP_INT8, OP_INT32, OP_CHAR, etc)
 - Base Objects (structs) (OP_RECT, OP_POINT, etc)
 - Base Errors (OP_ERROR_NONE, OP_ERROR_MEMORY_ALLOCATION, OP_ERROR_INVALID_ARG, etc)
 - General Code Module
 - Coding Style Pick one and stay with it! See next page
 - Coding Structure Pick one and stay with it! See next page
 - Extension: Planning for Change Vendor, Code, Attributes, Modules

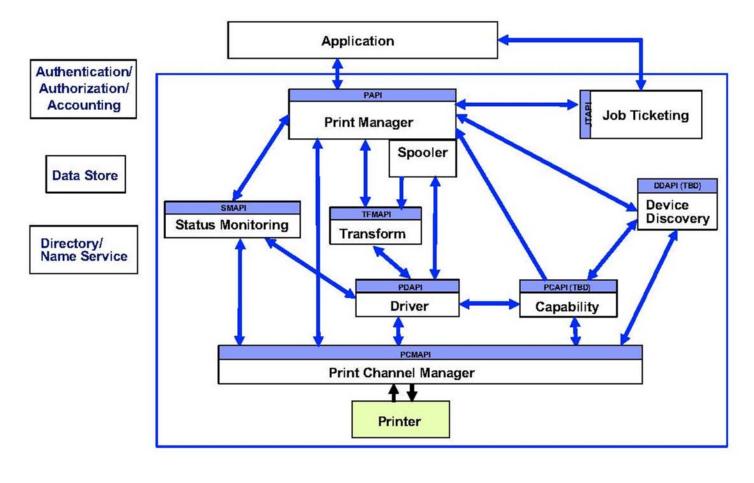
Coherence Needs (3)

The intent is not control but enable a method for rapid development & consistent development

benefiting users and developers.

Scalability

- **Environment** Level •
 - Users in all environments can (/will/shall/should??) have the same experience.
 - Limitation defined by Available Features and Capabilities.
- Software Level •
 - User Level
 - Print Dialog Common with feature and capability factors
 - Developer Level —
 - Encoding
 - API parametrics ... or
 - Printer/Printing capabilities ... or
 - Attribute properties ...
 - ... as strings for XML based or resource rich environments neither and both, neither and n **»**
 - » ... as constants for resource limited environments
 - Features and Capabilities
 - The scope, the fidelity and the inclusion based on resources and not necessarily environment !
 - Extension: Planning for Change
 - The scope, the fidelity and the inclusion based on resources and not necessarily environm ENVIRONMENTS



COHERENCE

MODELS SOFTWARE

Models (1)

• Architectural Reference Model (2006.04.10)

INTRODUCTION ENVIRONMENTS COHERENCE SCALABILITY MODELS SOFTWARE