
Linux Foundation: Open Printing
Open Summit Meeting, Fall 2007

Montreal, Canada

Presented By
Glen W. Petrie

The World of Graphics

Agenda
• Introduction

– Me to Open Printing

• Printing Environments
– Production to Embedded

• Coherence
– Environments to Software

• Scalability
– Environments to Software

• Models
– Production to Embedded

• Software
– Basic to Core to Thin-Thread to Solution

• Where are we …
– Architecture to Thin-Threads

• Where are we going …
– Thin-Threads to Solutions

Introduction
Environments
Coherence
Scalability
Models
Software

Introduction

• About Me

• Overview
– Open Printing History

– Open Printing Application Programming Interfaces

– Going Forward

Introduction
Environments
Coherence
Scalability
Models
Software

Introduction: About Me
• Glen W. Petrie

– Printing/Print Work Experience
• Epson Portland, Inc.: Senior Software Architecture / Principle Engineer

– Linux, WinCE and Embedded Core Drivers and Solutions for Consumer Inkjet Printers

• Xerox PARC: Principle Scientist/Engineering
– Production and Large Office Printing Architectures.
– Data Glyph Technology Architecture, Design and Development.

» Production, Office and Embedded Solutions

– Open Printing Background
• Was there on the first day in San Jose on Oct 25-26, 2001
• Member of the Open Printing

– Steering Committee,
– Architecture Team,
– Job Ticketing Working Group and
– Raster Driver Working Group

• Currently the Designer and Developer for the
– Open Printing Embedded Print Solution

Introduction
Environments
Coherence
Scalability
Models
Software

• The first Print Summit Meeting in San Jose, California on Oct 25-26, 2001

• Objective
– “Standardizing on a Scalable Print Environment in Linux.”

• Mission Statement
The mission of the Open-Printing is to develop and promote a set of standards
that will address the needs of embedded to desktop to enterprise-ready printing;
including management, reliability, security, scalability, printer feature access and network accessibility.

Introduction: Open Printing

Introduction
Environments
Coherence
Scalability
Models
Software

OpenPrinting

America/Europe Japan

Steering Committee

Architecture

Job Ticket

Application Interface

Raster Driver

Steering Committee

Vector Driver

Status Monitoring

Print Channel Monitor

Embedded Thin Thread

Environments
• We identify four principle Printing Environments

– Production Printing

– Office Printing

– Home Printing

– Embedded Printing

• Within each of these we can …
– … define a continuum of sub-environments

– … define distinct niche sub-environments

Introduction
Environments
Coherence
Scalability
Models
Software

Environment Factors
• What factors distinguish Printing Environments

Introduction
Environments
Coherence
Scalability
Models
Software

– Print Volume
• 1 to 10’s of sheets

• 10’s to 100’s of sheets

• 1000’s of sheets

– Print Location
• Attached Printer

• Network Printer

• Print Department

• Print Shop

– Print Job Type
• Simple

• Complex but Static

• Variable Data

– System Resources
• Run-Time Memory

• Processor Speed

Production Environment
• Factors

Introduction
Environments
Coherence
Scalability
Models
Software

– Print Volume
• 1 to 1000’s of sheets

– Print Location
• Print Department
• Print Shop

– Print Job Type
• Simple
• Complex but Static
• Variable Data
• Simple / Complex Finishing

– System Resources
• Run-Time Memory

– Unlimited
• Processors/ Processor Speed

– Multiple Systems
– Multiple processors
– High End Processor Speeds

Production Environment
• The Real World !!!

Introduction
Environments
Coherence
Scalability
Models
Software

Production Environment
• The Real Process !!!

Introduction
Environments
Coherence
Scalability
Models
Software

Office Environment
• Factors

Introduction
Environments
Coherence
Scalability
Models
Software

– Print Volume
• 1 to 100’s of sheets

– Print Location
• Network Printer
• Attached Printer

– Print Job Type
• Simple
• Complex but Static
• Simple Finishing

– System Resources
• Run-Time Memory

– Not Constrained
• Processors/ Processor Speed

– Single or More Systems
– Single or More Processor
– Not Speed Constrained

Diagrams From

Attached

Home Environment
• Factors

Introduction
Environments
Coherence
Scalability
Models
Software

– Print Volume
• 1 to 10’s of sheets

– Print Location
• Home Network Printer
• Attached Printer

– Print Job Type
• Simple

– System Resources
• Run-Time Memory

– Not Constrained
• Processors/ Processor Speed

– Single Systems
– Single Processor
– Not Speed Constrained

Diagrams From

Embedded/Handheld
Environment

• Factors

Introduction
Environments
Coherence
Scalability
Models
Software

– Print Volume
• 1 to 10 of sheets

– Print Location
• Network Printer
• Attached Printer

– Print Job Type
• Simple

– System Resources
• Run-Time Memory

– Less than 1 MiB
• Processors/ Processor Speed

– Single Systems
– Single Processor
– Less than 500 MHz

Coherence
• Environment Level

– Means the Users in all environments can (/will/shall/should??) have the same experience.
– Difference are mostly artificial

• Production can request the printing a single sheet
– Print a missing or damaged sheet

• Handheld can request the printing of a 100 copies
– Kinko’s prints 100 set of a presentation downloaded from a customer PDA

» Who generated the production job-ticket !!! Could (should?) the PDA do that? - Interesting

– Use a Scaleable Approach

• Software Level
– User Level

• Print Dialog - Common
• Print Attributes - Common representation and terminology

– Developer Level
• Print Attributes - Common representation and terminology
• Application Programming Interface (API) - Design, Format, Calls, Error, etc.
• Code Module - Coding Style, Coding Structure, Variable Typing, etc.
• Extension: Planning for Change - Vendor, Code, Attributes, Modules

Introduction
Environments
Coherence
Scalability
Models
Software

Coherence - Why
• User want consistency

– “Printing should just work” <<< User major activity is not printing, but they need it
– “Printing is different here!” <<< User diverted from original task
– “That not how I wanted the print to look! – What did I do different from before!?#$?%?! <<< Now What!!!

• Application Developers need consistency
– “Printing should just work” <<< Developer Application major function is not printing, but they support it
– “Printing is different here!” <<< Developer needs separate print function for individual systems
– “That not how I wanted the print to look! – What did I do different from before!?#$?%?!” <<< Now What !!!

• Printer Driver & OS Developers are expecting consistency
– “The print attributes are defined differently here!” <<< Developer creates hash table for attributes
– “The attributes has different units and three additional value!” <<< Developer creates a super set with hash table
– “The objects, object data and even data types are different between the two API’s <<< !#$%$% Now What !!!
– On & On & On & On

Introduction
Environments
Coherence
Scalability
Models
Software

Coherence Needs (1)
• A Single Dictionary

– Independent a of Environment, Print/Solution Vendor, Operating System & Application.
– Defining Terminology, Representation, Relationships, Dependencies &, where

applicable, Mathematics
– Defining Acronyms and Abbreviations
– Defining the Code Level Variable, Object(Struct) Membership, Range & Scope

• Use the OpenPrinting Job Ticket Objects & Enums as the Core / Start

• Common / Extensible Print Dialog
– Being worked on …
– Provides for both GUI and GUI-less API’s
– Scaleable down to Resource Limited Embedded/Handheld Solutions

Introduction
Environments
Coherence
Scalability
Models
Software

Coherence Needs (2)
• Software Level

– Application Programming Interface (API)
• Types: Static Link Library, Dynamic Link Library, Remote Processor Call, Other ??
• Base API’s: opInit_foo, opProc_foo, opRelease_foo

– Base Code Modules
• Base Headers

– Base Types (OP_INT8, OP_INT32, OP_CHAR, etc)

– Base Objects (structs) (OP_RECT, OP_POINT, etc)

– Base Errors (OP_ERROR_NONE, OP_ERROR_MEMORY_ALLOCATION, OP_ERROR_INVALID_ARG, etc)

– General Code Module
• Coding Style – Pick one and stay with it! – See next page
• Coding Structure – Pick one and stay with it! – See next page

– Extension: Planning for Change - Vendor, Code, Attributes, Modules

Introduction
Environments
Coherence
Scalability
Models
Software

Coherence Needs (3)
/**************************************|***************************************/
/* API-150010 */
/* Module : opInit_JTLib */
/* Description: Initializes the JTAPI library and return context structure */
/* used by this JTAPI library instance. */
/* param >>: none */
/* << param : none. */
/* */
/**************************************|***************************************/
/* */
/* Revision Log */
/* Date Who */
/* 2007.08.07 Glen W. Petrie */
/* # Original code */
/* */
/**************************************|***************************************/
void opInit_JTLib (

void

) {
/*** Declaration of Local Routine Variables */

/*** API Identifier Information for this Routine */
OP_API_REG(150010, "opInit_JTLib");

/*** Debug Flow Information for this Routine */
opDebugFlowIn("opInit_JTLib");

/*** Initialization of Local Routine Variables */

/*** Initialize Application global variables */
memset(&theJob, 0, sizeof(OP_JOB));
memset(&theJobTkt, 0, sizeof(OP_JOB_TKT));
theJobTkt.jobId = theJobId;

/*** Return to Caller */
OP_SET_ERR(OP_ERROR_NONE);
opDebugFlowOut("opInit_JTLib");
return;

}

Introduction
Environments
Coherence
Scalability
Models
Software

• Fixed Column Width

• Fixed Routine Header

• Fixed Common Comments

• Fixed Debug/Flow Statements

• etc.

The intent is not control but enable a method for rapid development &
consistent development

benefiting users and developers.

Scalability
• Environment Level

– Users in all environments can (/will/shall/should??) have the same experience.
– Limitation defined by Available Features and Capabilities.

• Software Level
– User Level

• Print Dialog – Common with feature and capability factors

– Developer Level
• Encoding

– API parametrics … or
– Printer/Printing capabilities … or
– Attribute properties …

» … as strings for XML based or resource rich environments
» … as constants for resource limited environments

• Features and Capabilities
– The scope, the fidelity and the inclusion based on resources and not necessarily environment !

• Extension: Planning for Change
– The scope, the fidelity and the inclusion based on resources and not necessarily environment !Introduction

Environments
Coherence
Scalability
Models
Software

which is “best”;

neither and both;

it depends upon environment

and solution space

Models (1)
• Architectural Reference Model (2006.04.10)

Introduction
Environments
Coherence
Scalability
Models
Software

