
Study of the PCM Plug-in
and

Status Monitoring Interface

TORATANI Yasumasa
<toratani.yasumasa@canon.co.jp>

OpenPrinting WG Japan/Asia
Canon Inc.

15-17 November 2004

Agenda
PCM Plug-in Interface

Backgrounds
Requirements
API Design

Status Monitoring Interface
Just an idea

Issues/Concerns, Next and Info.

PCM Plug-in Interface

Backgrounds
PCM provides the multi-channel interface for;

Writing a printing data to the printer.
Reading a printer status data from the printer.

Writing
Printing Data

Reading Status
for User “A”

PCM

Reading / Writing
Dataflow Control

Printer

Reading Status
for User “B”

control

Backgrounds (Cont.)
Needs to control the multi-channel data flow.

Who controls?

Each printer/protocol has its own commands and
procedures.

Who deals with the printer/protocol dependencies?

PCM Should be separated into two layers;
Core module providing the multi-channel functionalities.
Plug-in providing each printer/protocol dependent
functionalities.

Two Layers Arch.

Reading / Writing Control Process
Forked by PCM for each printer.
Manages the dataflow due to;
Data writing request by PCM.
Data reading request by PCM.
Data writing ready from Plug-in.
Data reading ready from Plug-in.

Plug-in for each Printer / Protocol
Manages the printer / protocol
dependent;
Packet control.
Timing Control for reading / writing.
Data translation.

Writing
Printing Data

Reading Status
for User “A”

PCM

Reading / Writing
Control Process

Printer / Network

Reading Status
for User “B”

Plug-in for
each Printer / Protocol

fork

fork or link
printer / protocol
independent layer

printer / protocol
dependent layer

control

Two Layers Arch. by threads
Writing

Printing Data
Reading Status

for User “A”

PCM

Reading / Writing
Control Process

Printer

Reading Status
for User “B”

Plug-in for each
Printer / Protocol

fork

fork or link
printer / protocol
independent layer

Reading Thread

printer / protocol
dependent layer

Writing
Thread

Reading
Thread

Writing Thread

control

control

Reading / Writing Control Process
Writing Thread

Manages the dataflow due to;
Data writing request by PCM.
Data writing ready from Plug-in.

Reading Thread
Manages the dataflow due to;
Data reading request by PCM.
Status reading ready from Plug-in.

Plug-in for each Printer / Protocol
Manages the printer / protocol
dependent;
Packet control.
Timing Control for reading / writing.
Data translation.

Requirements for Plug-in

Basic Requirements
Plug-in must;

A-1) Provide the API for;
• Writing a printing data to the printer.
• Reading a printer status data from the printer.

A-2) Conceal the printer/protocol dependencies.
• PCM can deal with all the printers/protocols (e.g. IPP, etc..)

as an unified object via each Plug-in.

A-3) Provide the API that can be applied on both;
• Big memory system.
• Small memory system.

Port Control Requirements
Plug-in must;

B-1) Conceal the port control procedures based on each
printer/network protocol dependencies.
• Open / Close a USB port, etc...
• Open / Close an IPP port etc...

Port must;
B-2) Be specified by the generic device/network protocol

identifier.
• URI ?

Data Reading Requirements
Plug-in must;

C-1) Provide a generic API for sending back the variable
length printer status.
• Printer status data length depends on each printer model

and conditions of the printer.
• Plug-in may separate a single very long printer status data

into a set of several short data for sending them back into a
short restricted buffer prepared by the upper layer.

C-2) Provide the API to know the top of the printer status
data and/or to reset the reading position of it.
• The upper layer doesn’t know what the status data

includes(binary, XML, etc…), but needs to know
the top of it.

• Reading a printer status data may be interrupted
by a signal.

Data Reading Requirements (Cont.)

Plug-in must;
C-3) Keep the printer status data consistent until all the

status data are read by the upper layer.
• Plug-in needs a trigger to allow for reading a printer status

from the printer/network port.

C-4) Provide the API which gives a trigger to the Plug-in
for dealing with reading a printer status data and
writing a printing data exclusively.
• Some printers/protocols have to deal with reading a printer

status data and writing a printing data exclusively,
and the Plug-in needs a trigger for doing it.

Data Writing Requirements
Plug-in must;

D-1) Provide the API which gives a trigger to the Plug-in
for dealing with reading the printer status data and
writing the printing data exclusively.
• Same as C-4) of the Data Reading Requirements.
• Writing a printing data may be interrupted by a signal.

Dataflow Control Requirements
Plug-in must;

E-1) Let the upper layer know;
• If the Plug-in is ready to receive a printing data.
• If the Plug-in is ready to send back a printer status data.

Plug-in should;
E-2) Provide the API being not affected by OS platform

dependencies.

Printer Control Requirements
Plug-in must;

F-1) Provide the API to cancel a printing.
• The upper layer keeps alive the Plug-in for obtaining the

printer status continuously across several printing jobs.
• Each printing job’s printing data might be specified by an

identifier for the cancellation. (TBD)
• Example) In case of the upper layer sends two job’s printing data to

the Plug-in. After the upper layer finished to send the first job’s printing
data to the Plug-in, the upper layer can start to send the second job’s
printing data while the Plug-in may send the first job’s printing data to
the port. During this period, the first job has not been finished, and if
the user wants to cancel the second job after noticed the mistake, the
upper layer needs an identifier to cancel the second job’s
data buffering, or cancel the first job.

Upper
Layer

Plug-in Printer

2nd Job’s Printing Data 1st Job’s Printing Data
Write Write

Cancel

Printer Control Requirements (Cont.)

Plug-in might (TBD);
F-2) Provide the API for the common control functions.

• “Pause”, “Resume” for local port printers as well as IPP ?
• IPP needs a job identifier to control a job.

F-3) Provide the API for tracking printing jobs.
• Plug-in for IPP will be provided, while IPP provides job

attributes.
• If PCM is the “only” interface to access a printer, PCM might

provide the interface for tracking printing jobs in a printer to
satisfy some applications needs.

Plug-in API Design

Object / Port Control
Object Control

New
Conceal the printer/protocol dependencies in the created object.
Object keeps the URI specified by the upper layer until destroyed.

Destroy
Destroy the object.

Port Control
Open

Open the printer / network port specified by the object.

Close
Close the port / network port specified by the object.

Data Reading
StartRead

Declare the start of reading a printer status.
Reset the reading position of the printer status data in the object.

Read
Read the specified byte length of a printer status data from the
object, and store them in the buffer given by the upper layer.
Returns the status data byte length read from the object, or zero
when no status data remains in the object.

* The data format of the printer status is out of scope of this API.

EndRead
Declare the end of reading a printer status.

Data Writing
StartWrite

Declare the start of writing a printing data.

Write
Write the specified byte length of a printing data in the buffer given
by the upper layer to the object.
Returns the printing data byte length written to the object, or zero
when no printing data written to the object.

EndWrite
Declare the end of writing a printing data.

Dataflow Control
GetReadFD

Obtain the reading file descriptor for select() use.
The upper layer know by select() if the Plug-in is ready to send back
a printer status data.

GetWriteFD
Obtain the writing file descriptor for select() use.
The upper layer know by select() if the Plug-in is ready to receive a
printing data.

The upper layer deals with
all the reading/writing request
by select().

Reading / Writing
Control Process

Plug-in for
each Printer / Protocol

control

Printer Control
StartJobData

Declare the beginning of the printing data of each job to the object.

CancelJobData
Cancel the printing data specified by the job identifier.

EndJobData
Declare the end of the printing data to the object.

ExtCtrl
Execute the extended printer control,
such as “Pause”, “Resume”...

Status Monitoring Interface

Just an Idea
Requirements

Status Monitoring Interface must;
Translate the printer status data read from each Plug-
in into the generic format data that does not depend
on each printer/protocol.

Generic format is XML? IPP? other?

Just an Idea (Cont.)
API Design
New

Conceal the printer/protocol dependencies in the created
object.
Object keeps the “language” and “character encoding”
specified by the caller (module which calls this API) until
destroyed.

StartTranslate, Translate, EndTranslate
Translate the printer status data given by the caller to the
generic format data, and store it into the buffer given by the
caller.

Destroy
Destroy the object.

Issues/Concerns, Next and Info.

Issues/Concerns, Next
Plug-in Interface

Need to collect the requirements for handling events.

Status Monitoring Interface
Need to collect the requirements for the Status
Monitoring functionalities.

Next
Define the draft Plug-in API.
Define the draft Status Monitoring API.

Info.
Contributors

TORATANI Yasumasa Canon Inc.
Osamu MIHARA FUJI XEROX Printing Systems Co. Ltd.
Ide Kentaro SEIKO EPSON CORPORATION
Nomura Kazuo EPSON SOFTWARE DEVELOPMENT LABORATORY, INC.
KANJO Hidenori BBR INC.
YOSHIDA Mikio BBR INC.
Shinpei KITAYAMA EPSON KOWA CORPORATION
YAMAGISHI Toshihiro Turbolinux, Inc.
Hisao NAKAMURA E&D
Koji OTANI AXE

Thank you.

