
1 Operations Used in Cloud Imaging Services 1

1.1 Client to Cloud Imaging Server Operations 2

1.1.1 Basic Client Service Operations 3
The common Basic operations are listed in Table 1; they are concerned with creating and 4
controlling Jobs and Documents within Jobs in the Cloud Imaging Service. Although in most 5
cases, operations affecting Jobs in the Cloud Imaging Service will be transferred to 6
corresponding Jobs in the Imaging Devices by way of the communication between the Cloud 7
Imaging Device Manager and the Cloud Imaging Service, these operations from the User/Client 8
do not act on the Device Jobs directly. 9

The Operations include those by which a Client gets Service Elements to allow selection of 10
Services and formulation of Job Tickets. Some of these operations do affect the state of a Job. 11
However, none of these operations directly affect the state or configuration of the Service except 12
to the extent that creating or canceling a Job may initiate a sequence that affects the Service. 13

 14

Table 1 Basic MFD Interface Requests and Responses 15

Operation Request
Parameters (Notes 2)

Response
Parameters (Note 3)

Note

Add<Service>HardcopyDocument InputSource, JobId, Document Ticket(optional),
ElementsNaturalLanguage(optional),

LastDocument(optional), RequestingUserName

DocumentNumber,
UnsupportedElements(optional)

Cancel<Service>Document DocumentNumber,
ElementsNaturalLanguage(optional), JobId,
Message (optional) RequestingUserName

Cancel<Service>Job ElementsNaturalLanguage(optional), JobId,
Message (optional) RequestingUserName

CancelCurrent<Service>Job ElementsNaturalLanguage(optional),
JobId(optional), Message (optional)

RequestingUserName

CancelMy<Service>Jobs JobIds (optional), Message (optional),
ElementsNaturalLanguage(optional),

RequestingUserName

JobIds (optional) 1

Close<Service>Job JobId, RequestingUserName

Create<Service>Job ElementsNaturalLanguage(optional), Job Ticket
(optional) RequestingUserName

JobId, UnsupportedElements(optional)

GetActive<Service>Jobs ElementsNaturalLanguageRequested(optional),
Limit(optional) RequestingUserName

ElementsNaturalLanguage(optional)Jo
bSummaries (includes JobID,

JobName, JobOriginatingUserName,
JobState and perhaps

JobStateReasons)(optional)

Get<Service>DocumentElements Document Number,
ElementsNaturalLanguageRequested(optional),

JobId, RequestingUserName

DocumentElements(optional),
ElementsNaturalLanguage(optional)

Get<Service>Documents ElementsNaturalLanguageRequested(optional),
JobId, RequestingUserName

Documents(list of
DocumentSummaries)(optional),

ElementsNaturalLanguage(optional)Jo
bID, JobName

Get<Service>JobElements ElementsNaturalLanguageRequested(optional),
JobId, RequestedElements (JobReceipt, JobStatus,

or Job Ticket.)(optional) RequestingUserName

JobElements,
ElementsNaturalLanguage(optional)

Get<Service>Job History ElementsNaturalLanguageRequested(optional),
Limit(optional) RequestingUserName

ElementsNaturalLanguage(optional)Jo
bSummaries (includes JobID,

JobName, JobOriginatingUserName,
JobState and perhaps

JobStateReasons

Get<Service>ServiceElements ElementsNaturalLanguageRequested(optional),
RequestedElements (Service Capabilities,
ServiceConfiguration, ServiceDescription,

ServiceStatus or DefaultJob Ticket.)(optional)
RequestingUserName

ElementsNaturalLanguage(optional)Se
rviceElements(optional)

Resubmit<Service>Job ElementsNaturalLanguageRequested(optional),
JobId, Job Ticket (optional) RequestingUserName

JobId, UnsupportedElements(optional)

Resume<Service>Job ElementsNaturalLanguageRequested(optional),
JobId, Message(optional)RequestingUserName

Send<Service>Document ElementsNaturalLanguageRequested(optional),
Document Ticket (optional) JobId,

LastDocument(optional), RequestingUserName,
DocumentData

DocumentNumber,

UnsupportedElements(optional)

Send<Service>Uri DocumentUri,
ElementsNaturalLanguageRequested(optional),

Document Ticket (optional) JobId,
LastDocument(optional), RequestingUserName

DocumentNumber,

UnsupportedElements(optional)

Set<Service>DocumentElements DocumentNumber,
ElementsNaturalLanguage(optional),

SocumentTicket, JobId, Message(optional),
RequestingUserName

UnsupportedElements(optional)

Set<Service>JobElements ElementsNaturalLanguage(optional), Job Ticket,
JobId, Message(optional), RequestingUserName

UnsupportedElements(optional)

SuspendCurrent<Service>Job ElementsNaturalLanguage(optional),
JobId(optional), Message(optional),

RequestingUserName

Validate<Service>Document Ticket ElementsNaturalLanguageRequested(optional),
Document Ticket RequestingUserName

UnsupportedElements(optional)

Validate <Service>Job Ticket ElementsNaturalLanguage(optional), Job Ticket,
RequestingUserName

UnsupportedElements(optional)

Notes: 16

Note 1: Response includes identified but un-cancellable Jobs 17
Note 2: The RequestingUserName, is used by the Service to determine whether the requestor is an Administrator, Operator or the Job Owner 18
and is therefore authorized to make the request. Some implementations may require further authentication of the requestor’s identity. If the 19
requestor is not determined to have access, the Service MUST reject the request. 20
Note 3: All responses must include correlation to request and whether request was successful or failed. 21
 22

1.1.1.1 Add<Service>HardcopyDocument[ww1] 23
The Add<Service>HardcopyDocument operation allows a Client to prepare a Service to request 24
a Hardcopy Document via a scanner Subunit and to add it to an identified Job. It is analogous to 25
the Send<Service>Document and Send<Service>Uri operations except that it is applicable to 26
Services for which input Documents are obtained by a scan of a region of a media sheet side, 27
such as FaxOut and EmailOut. 28

The Service MUST reject this request and send an appropriate message if: 29

1. The requestor is not the owner of the identified Job, or is not an Administrator or Operator; 30
2. The Service has already closed inputs to the identified Job, or 31
3. The Job is not found. 32

Otherwise, provided the request is properly constructed, complete and references valid objects, 33
the Service MUST accept the request, MUST close the Job if the LastDocument Element is 34
asserted, MUST be prepared to add Document Data from the identified input to the identified 35
Job, and MUST respond to the request. 36

1.1.1.2 Cancel<Service>Document 37
The Cancel<Service>Document operation allows a Client to cancel a specified Document in a 38
specified Job of the specified Service any time from when the time the Document is created up 39
to, but not including, the time that the Document is Completed, Canceled or Aborted. Because a 40
Document might already be in Processing by the time a Cancel<Service>Document request is 41
received, some portion of the Document processing might be completed before the Document is 42
actually canceled. 43

The Cancel<Service>Document operation does not remove the Document from the Job or the 44
Service, but does set the specified Document’s Document State Document Status Element to 45
Canceled and the Document’s Document State Reasons Element to an appropriate value. If the 46
Job containing the Document is again submitted using Resubmit<Service>Job, the canceled 47
Document is also submitted for processing. Thus Cancel<Service>Document has the same 48
semantics as Cancel<Service>Job which cancels only the processing of the Job but does not 49
delete the Job object itself. 50

The Cancel<Service>Document operation does not affect the states of any of the other 51
Documents in the Job. If the Job is in the Processing state and there are more Documents to be 52
processed, the Service does continue to process the un-canceled Documents. If there are no 53
further Documents to process, the Job is advanced to the Completed state. 54

The Service MUST reject the operation and return an appropriate response message if the 55
operation requestor is not either the Job owner or a Service or System operator or administrator. 56
Otherwise the Service MUST accept or reject the Cancel<Service>Document request based on 57
the Document's current state and, if the request is accepted, the Service MUST transition the 58
Document to the indicated new state as follows: 59

Once a “success” response has been sent, the implementation guarantees that the Document will 60
eventually end up in the Canceled state. Between the time that the Cancel<Service>Document 61
request is accepted and when the Document enters the Canceled Document-state, the 62
DocumentStateReasons Element MUST contain a value which indicates to any later query that, 63
although the Document might still be Processing, it will eventually end up in the Canceled state. 64

1.1.1.3 Cancel<Service>Job 65
The Cancel<Service>Job operation changes the state of the identified Job to Canceled, provided 66
that the Job is not already in or in a mode leading directly to a termination state. (i.e., Completed, 67
Canceled, or Aborted.) Because a Job might already be active by the time a Cancel<Service>Job 68
is received, a portion of the Job may be done before the Job is actually terminated. 69

The Service MUST accept or reject the request based on the Job's current state. If the request is 70
accepted, the Job state is transitioned to Canceled and the Service will issue a success response. 71
See the transition diagram under Job State . If the implementation requires some significant time 72
to cancel a Job in the Processing or ProcessingStopped states, the Service MUST set the Job's 73
JobStateReasons to a value indicating that the Job is transitioning to a Canceled state. If the Job 74
already has a JobStateReasons indicating that it is transitioning to a Canceled state, then the 75
Service MUST reject a Cancel<Service>Job operation 76

1.1.1.4 CancelCurrent<Service>Job 77
The CancelCurrent<Service>Job operation allows a Client to cause the Service to terminate 78
processing on the currently processing Job and to move that Job to the Canceled state. As with 79
any other Basic operation directly affecting a Job, this operation is accepted by the Service only 80
if the originator is the Owner of the affected Job(s) or is an Administrator or Operator. 81

There is the potential that the current Job may have changed between the time a Client requests 82
this operation and the time the Service implements it. Therefore, if the intent is to cancel a 83
particular Job the Client MAY include an optional JobId parameter in the request. 84

1. If the JobId is included in the request and that Job is currently in the Processing or 85
ProcessingStopped state and the operation requestor has access rights to that Job, the 86
Service MUST accept the request and cancel the Job. 87

2. If no JobId is included in the request and the operation requestor has access rights to the Job 88
currently in the Processing or ProcessingStopped state, the Service MUST accept the 89
request and cancel that Job. 90

3. If more than one Job is in the Processing or ProcessingStopped state, all currently 91
processing Jobs to which the request originator has access MUST be canceled unless the 92
operation included the optional JobId, in which case only the identified Job is canceled. 93

4. If the JobId is included in the request and that Job is not currently in the Processing or 94
ProcessingStopped state; or if the requestor does not have access rights to the identified 95
Job, the Service MUST reject the request and return the appropriate error code. 96

5. If there is no Job currently in the Processing or ProcessingStopped state or if the requestor 97
does not have access rights to any Job that is in the Processing or ProcessingStopped state, 98
the Service MUST reject the request and return the appropriate error code. 99

1.1.1.5 CancelMy<Service>Jobs 100
The CancelMy<Service>Jobs operation permits a user to cancel all of their own identified non-101
Terminated Jobs or, if no specific Jobs are identified in the request, to cancel all of their own 102
non-Terminated Jobs in the Service. This operation works like the Cancel-Job operation except 103
that the operation can apply to multiple Jobs. The Client specifies the set of candidate Jobs to be 104
canceled by supplying and/or omitting the JobIds. The Service MUST check the access rights of 105
the requesting user against all of the candidate Jobs. If any of the candidate Jobs are not owned 106
by the requesting user, the Service MUST NOT cancel any Jobs and MUST return the 107
appropriate error status code along with the list of any JobIds that were specifically identified in 108
the operation request but to which the User is not authorized access. 109

If this check succeeds, then (and only then) the Service MUST accept or reject the request based 110
on the current state of each of the candidate Jobs and must transition each Job to the indicated 111
new state as shown for the antecedent Cancel-My-Jobs operation in the Standard for Internet 112
Printing Protocol (IPP): Job and Printer Extensions Set 2 [PWG5100.11]. If any of the candidate 113
Jobs that were not already in a Terminating state cannot be canceled, the Service MUST NOT 114
cancel any Jobs and MUST return the appropriate error status code along with the list of JobIds 115
for those Jobs which were specifically identified in the operation request but could not be 116
canceled. If the requested Jobs include some Jobs that are already in a terminating state, this 117
circumstance in itself MUST NOT interfere with the canceling of non-terminated candidate Jobs, 118
but SHOULD result in the return of a warning message identifying the specifically identified 119
Jobs that already were in a Terminating state. 120

1.1.1.6 Close<Service>Job 121
The Close<Service>Job operation allows a Client to close Job inputs to those Services accepting 122
Documents, even when the last Document input operation for the Job (Send<Service>Document, 123
Send<Service>URI or Add<Service>Document) did not include the LastDocument Element with 124
a 'true' value. This Close<Service>Job operation supersedes and, if supported by the Service, is 125
preferable to the practice of using a Send<Service>Document with no Document Data but with a 126
LastDocument Element containing a 'true' value to close inputs. 127

The Service MUST reject this operation request if the target Job is not found or if the requestor is 128
not the Job Owner or an Administrator. Otherwise, the Service MUST accept this operation 129
request even if the target Job is already closed and regardless of JobState. Closing the Job MUST 130
cause the Service to reject any subsequent Document input operation for the target Job, but 131
MUST NOT affect the execution of any previously accepted Document input operation. 132

1.1.1.7 Create<Service>Job 133
The Create<Service>Job operation allows a Client to request creation of a Job in the Service. 134
Upon creation, the Job is in Pending state and available for scheduling unless a Job Processing 135
instruction prevents this. (e.g., JobHoldUntil puts it in PendingHeld state) The 136
Create<Service>Job operation MUST fail if the Service’s IsAcceptingJobs Element value is 137
‘false’. 138

Job Processing is done on one or more Documents. Unlike the antecedent IPP Print-Job 139
operation, the MFD Create<Service>Job may involve more than one Document. Depending 140
upon the type of Service, the input may be a Hardcopy Document or a Digital Document. In 141
either case, the source(s) of the input Document(s) as well as the destination(s) of the output 142
Document(s) are identified in the Job Ticket submitted in the Create<Service>Job Request, 143

Once a Job is created, Documents may be input as part of that Job by Send<Service>Document, 144
Send<Service>URI or, for Services that accept hardcopy input, Add<Service>Document 145
operations. In Service implementations that do not accept multiple Documents (i.e., 146
MultipleDocumentJobsSupported = False), Document input is closed after one Document is 147
accepted. In Service implementations that do accept multiple Documents (i.e., Multiple 148
Document Jobs Supported = True), there may be multiple Send<Service>Document, 149
Send<Service>URI or Add<Service>Document operations. There are two methods of indicating 150
when all Documents have been sent: 151

1. issuing a Close<Service>Document request 152

2. issuing a Send<Service>Document, Send<Service>URI or, 153
3. Add<Service>Document request with the LastDocument Element = True 154

To avoid a possible hang condition, Service implementations supporting multiple Document Jobs 155
must also support the Multiple Operation Time Out Element that indicates the minimum number 156
of seconds the Service will wait for the next Send or Add operation before taking some recovery 157
action. If, for some reason, there is a longer period between Create<Service>Job and valid Send 158
or Add operations, or between sequential Send or Add operations, the Client MUST send Send 159
or Add requests, even if they are empty, to reset the timeout. If there is a multiple operation 160
timeout, the Service will take remedial action according to the value that Service has indicated in 161
its Multiple Operation Timeout Action Element. 162

1.1.1.8 Get<Service>DocumentElements 163
The Get<Service>DocumentElements operation allows a Client to obtain detailed information 164
about the specified Document within the specified Job. This operation is parallel to the 165
Get<Service>Job-Elements operation, but with the target and response Elements relating to a 166
Document rather than a Job. 167

The Client requests specific groups of Elements (complex Elements) contained within the 168
Document. The Document Data is not part of the Document and cannot be retrieved using this 169
operation. However the location of the Document Data is available. The allowed values for 170
Requested Elements are Document Receipt, Document Status and Document Ticket. Vendors 171
may extend the allowed values. 172

The Service MUST return the Document Description Element values that a Client supplied in the 173
Document Creation operation (Create<Service>Job, Send<Service>Document or 174
Send<Service>URI) or provided in Set<Service>DocumentElements operation a plus any 175
additional Document Description Elements that the Service has generated, such as Document 176
State. The Service MUST NOT return any Job level Elements that the Document inherits from 177
the Job level but MUST return Document Elements specified at the Document level. It is NOT 178
REQUIRED that a specific Document include all Elements belonging to a group (since some 179
Elements are optional). However, it is REQUIRED that the Service support all these group 180
names for the Document object. 181

1.1.1.9 Get<Service>Documents 182
The Get<Service>Documents operation allows a Client to retrieve the list of Documents 183
belonging to the identified Job. A Document summary containing a group of Document Element 184
names with their values will be returned for each Document in the Job. 185

This operation is similar to the Get<Service> and Get<Service> operations except that it returns 186
Elements from Documents rather than identified Jobs. As with the 187
Get<Service>DocumentElements operation, the Service MUST return only those Elements that 188
are in the Document Ticket. 189

1.1.1.10 Get<Service>JobElements 190
The Get<Service>JobElements operation allows a Client to obtain detailed information on the 191
specified Job. Unlike the antecedent IPP Get-Job-Attributes operation, the 192
Get<Service>JobElements request may not specify individual Elements. Rather, the Client 193
requests specific groups of Elements contained within the Job. The allowed values for 194

RequestedElements are Job Receipt, Job Status, or Job Ticket. Vendors may extend the allowed 195
values. 196

The Service MUST reject this request if the requestor is not authorized access to the identified 197
Job, 198

1.1.1.11 Get<Service>Jobs 199
The Get<Service>Jobs operation provides summary information on all Jobs that have reached a 200
terminating state (i.e., Completed, Canceled Aborted). As such, it is similar to the antecedent 201
Get-Jobs operation with the which-Jobs Element set to ‘completed’. Unlike Get-Jobs, 202
Get<Service>Jobs may not include a Requested Elements argument; rather, it always returns a 203
Job Summary for each terminated Job including JobId, JobName, JobOriginatingUserName, 204
JobState and perhaps JobStateReasons and other Service specific information. 205

When the operation is exercised by a User that is not an Administrator, the Job summary may not 206
include all of the summary information, depending upon site security policy. 207

1.1.1.12 Get<Service>ServiceElements 208
The Get<Service>ServiceElements operation allows a Client to obtain detailed information on 209
the Elements and their values supported by the Service. Unlike the antecedent IPP Get-Printer-210
Attributes operation, the Get<Service>ServiceElements request may not specify individual 211
Elements. Rather, the Client requests information on one or more specific group of Elements. 212
The allowed values for Requested Elements are Service Capabilities, Service Configuration, 213
Service Description, Service Status or DefaultJob Ticket. Vendors may extend the allowed 214
values. 215

Some Services may accept an additional argument in a Get<Service>ServiceElements request to 216
further filter the response, much as the antecedent IPP Get-Printer-Attributes operation accepted 217
the Document-Format Element. The individual Service specifications identify such arguments if 218
any, their effect and whether support is mandatory. 219

In addition to the status message, the Service response includes the set of requested Element 220
names and their values for all supported Elements. The response need not contain the requested 221
Element names for any Elements not supported by the Service. 222

1.1.1.13 GetActive<Service>Jobs 223
The GetActive<Service>Jobs operation provides summary information on all Jobs in the 224
Pending or Processing state. As such, it is equivalent to the antecedent Get-Jobs operation with 225
the which-Jobs Element set to ‘not-completed’. Unlike the antecedent Get-Jobs operation, 226
GetActive<Service>Jobs may not include a RequestedElements argument; rather, it always 227
returns a JobSummary for each Active Job with the summary including JobId, JobName, 228
JobOriginatingUserName, JobState and perhaps JobStateReasons and other Service specific 229
information. 230

When the operation is exercised by a User that is not an Administrator or Operator, the Job 231
summary may not include all of the summary information, depending upon site security policy. 232

1.1.1.14 Resubmit<Service>Job 233
The Resubmit<Service>Job operation allows a Client acting for the Job Owner or an 234
Administrator or Operator to resubmit a previously completed Job, but with the option of 235

providing new Job Ticket information (other than input Document Data or input Document Data 236
descriptive information.) 237

The Resubmit<Service>Job operation is applicable only to a RetainedJob. A Retained Job is one 238
which remains in the Service after it has been completed or canceled. This may be incidentally or 239
because it is a saved Job, which is a Completed or Canceled Job with a JobSaveDispostion 240
Element value that indicates that the Job, including Document Data if any, should not be deleted 241
or aged-out after the Job is completed. 242

If a Resubmit<Service>Job operation is accepted, the state of the retained Job is not changed; 243
rather, a new Job is created from the identified retained Job and submitted with an implicit 244
CreateJob request. 245

1. If the Resubmit<Service>Job request contains a processing Element that was in the retained Job 246
but with a different value, the value supplied in the Resubmit<Service>Job operation MUST 247
override the original value (if supported by the Service). 248

2. If the Resubmit<Service>Job request contains a processing Element that was not in the retained 249
Job, the Element with the value supplied with the Resubmit<Service>Job operation MUST be 250
applied (if supported by the Service) 251

3. For any processing Element in the original retained Job the value of which is not changed in the 252
Resubmit<Service>Job request, that Element and its value MUST be applied to newly created 253
Job except that a JobSaveDispostion Element value indicating that the Job should be saved, and 254
certain other Service-specific Element values, MUST NOT be copied but are applied to the new 255
Job only if they are in the Resubmit<Service>Job request. 256

The newly created Job is moved to the Pending or PendingHeld Job state with the same Element 257
values as the original saved Job (except for the save Element). If any of the Documents in the 258
saved Job were passed by reference (Send<Service>URI or Send>Service>URI), the Service 259
MUST re-fetch the data, since the semantics of Restart<Service>Job are to repeat all Job 260
processing. The Service MUST assign new JobUri and JobId values to the newly created Job; the 261
JobDescription Elements that accumulate Job progress, such as JobImpressionsCompleted, 262
JobMediaSheetsCompleted, and JobKOctetsProcessed, MUST be an accurate record for the 263
newly created Job. 264

The Service MUST accept or reject the Resubmit<Service>Job Request based on the authority of 265
the requester and the referenced Job's current state. The Requester must either be the Job owner 266
or an operator or administrator of the Service. The target Job must be retained with a Completed 267
or Canceled state. 268

1.1.1.15 Resume<Service>Job 269
The Resume<Service>Job operation allows a Client acting for the Job Owner or an 270
Administrator or Operator to resume the identified Job at the point where it was suspended. 271
Provided that no other condition exists that forces the Job to the PendingStopped state, the 272
Service moves the Job from the ProcessingStopped state to the Pending state and removes the 273
JobSuspended value from the Job's StateReasons Element. If the identified Job is not in the 274
ProcessingStopped state with the JobSuspended value in the Job's StateReasons Element, the 275
Service MUST reject the request and return an appropriate status code, since the Job was not 276
suspended. 277

If a Service supports Suspend<Service>Job or SuspendCurrent<Service>Job operations, it 278
MUST support the Resume<Service>Job operation, and vice-versa. 279

1.1.1.16 Send<Service>Document 280
The Send<Service>Document operation allows a Client acting for the Job Owner or an 281
Administrator or Operator to input a Digital Document to a Service as part of an already created 282
Job. In response to the Create<Service>Job, the Service will have returned the JobURI and the 283
JobId. For each Document that the Client desires to add to this Job, the Client issues a 284
Send<Service>Document request which includes the JobId and contains the entire stream of 285
Document Data for one Document. 286

If the Service supports this operation but does not support multiple Documents per Job, 287
Document input is closed after the first Document is accepted and the Service MUST reject 288
subsequent Send<Service>Document requests associated with the same Job. Similarly, if the 289
Service does support multiple Documents per Job, the Service MUST reject 290
Send<Service>Document requests associated with a given Job after inputs to that Job have been 291
closed either a Close<Service>Job operation or a previous Send<Service>Document with a 'true' 292
value for the LastDocument Element. Note that the Client may send and the Service must accept 293
a Send<Service>Document request with a 'true' value for the LastDocument Element to close 294
input to that Job, even if that request includes no Document data. 295

See the Create<system>Job description for discussion of issues relating to excessive delay 296
between multiple Send<Service>Document requests. 297

The Service MUST reject a Send<Service>Document request and send an appropriate message 298
if: 299

1. The requestor is not the owner of the identified Job, or is not an Administrator or operator 300
2. The Service has already closed inputs to the identified Job, 301
3. The Document size, format and/or compression are not supported by the Service, or 302
4. The Job is not found. 303

Otherwise, the Service MUST accept the request, MUST close the Job if the LastDocument 304
Element is asserted, MUST add the supplied Document Data (if any) to the identified Job, and 305
MUST respond to the request. 306

1.1.1.17 Send<Service>Uri 307
The Send<Service>Uri operation allows a Client acting for the Job Owner or an Administrator or 308
Operator to input a Digital Document to a Service as part of an already created Job. As such, the 309
Send<Service>Uri operation is identical to the Send<Service>Document except that a Client 310
supplies a URI reference (DocumentUri Element) rather than the Document Data itself. If a 311
Service supports both operations, Client s can use both Send<Service>Uri and 312
Send<Service>Document operations to add new Documents to an existing multi-Document Job. 313

As with Send<Service>Document, if the Service supports Send<Service>Uri but does not 314
support multiple Documents per Job, the Service MUST reject subsequent Send<Service>Uri 315
requests associated with the same Job. Similarly, if the Service does support multiple Documents 316
per Job, the Service MUST reject Send<Service>Uri requests associated with a given Job after 317
inputs to that Job have been closed. Job inputs can be closed either by a Close<Service>Job 318
operation or a Send<Service>Document (NOT a Send<Service>Uri) request with a 'true' value 319
for the LastDocument Element. Note that the Client may send and the Service must accept a 320
Send<Service>Document request with a 'true' value for the LastDocument Element to close input 321
to that Job even if that request includes no Document data. 322

The Service MUST reject this request and send an appropriate message if: 323

1. The requestor is not the owner of the identified Job, or is not an Administrator or operator 324
2. The Service has already closed inputs to the identified Job, 325
3. The Job is not found 326
4. The Document size, format and/or compression are not supported by the Service, or 327
5. The Service does not support the URI Scheme specified. 328

Otherwise, the Service MUST accept the request, MUST close the Job if the LastDocument 329
Element is asserted, MUST add the Document Data (if any) to the identified Job, and MUST 330
respond to the request. See the Create<system>Job description for discussion of issues relating to 331
excessive delay between multiple Send<Service>Uri requests. 332

1.1.1.18 Set<Service>DocumentElements 333
The Set<Service>DocumentElements operation allows a Client , operating for the Job Owner or 334
an Administrator, to set the values of identified Elements of the specified Document within the 335
specified Job. This operation is parallel to the Set<Service>JobElements and 336
Set<Service>ServiceElements operations and it follows the same rules for validation, but with 337
the target and response Elements relating to a Document rather than a Job or the Service. 338

The Client must fully identify the Elements to be set as well as the set values. The only settable 339
Elements are those within the Document Ticket. The Document Data is not part of the Document 340
and cannot be changed using this operation. If a Document was originally submitted without a 341
given settable Element that the Set<Service>DocumentElements request attempts to set, the 342
Service adds the specified Element to the Document. 343

If the Client identifies a Document Element but does not specify a value for that Element, then 344
the Service MUST remove the Element and all of its values from the Document. The semantic 345
effect of the Client supplying the Element with no value in a Set<Service>DocumentElements 346
operation MUST be the same as if the Element had not originally been supplied with the 347
Document. This corresponds to the action of the out-of-band value “DeleteElement” in the 348
antecedent IPP Set-Document-Attributes operation. Any subsequent 349
Get<Service>DocumentElements or Get<Service>Documents request MUST NOT return any 350
Element that has been deleted. However, a Client can re-establish such a deleted Document 351
Element with any supported value(s) using a subsequent Set<Service>DocumentElements 352
operation. 353

If the Client supplies an Element in a Set<Service>DocumentElements request with no value and 354
that Element is not present in the Document object, the Service ignores that supplied Element in 355
the request, does not return the Element in the Unsupported Elements group, and returns the 356
‘success’ status code, provided that there are no other problems with the request. 357

The validation of the Set<Service>DocumentElements request is performed by the Service as if 358
the Document had been submitted originally with the new Element values (and the deleted 359
Elements removed); i.e., all modified Document Elements and values must be supported in 360
combination with the Document Elements not modified. If such a Document Creation operation 361
would have been accepted, then the Set<Service>DocumentElements MUST be accepted. If such 362
a Document Creation operation would have been rejected, then the 363
Set<Service>DocumentElements MUST be rejected and the Document MUST be unchanged. In 364
addition, if any of the supplied Elements are not supported, are not settable, or the values are not 365
supported, the Service MUST reject the entire operation; the Service MUST NOT set just some 366

of the supplied Elements. That is, Set<Service>DocumentElements MUST be implemented as an 367
atomic operation; after the operation, all the supplied Elements MUST be set or all of them 368
MUST NOT be set. 369

The value of JobMandatoryElements supplied in the original Create<Service>Job request, if any, 370
MUST have no effect on the behavior of the Set<Service>DocumentElements operation. Rather, 371
the Service must consider that any Element or Element value in a 372
Set<Service>DocumentElements operation is mandatory. The Service MUST reject any request 373
to set a Document Element to an unsupported value or to a value that would conflict with another 374
Document Element value. 375

The Service MUST respond to the Set<Service>DocumentElements operation as defined for the 376
antecedent Set-Document-Attributes operation in the Standard for IPP Document Objects 377
[PWG5100.5]. Although the Document's current state affects whether the Service accepts or 378
rejects the Set<Service>DocumentElements request, the operation MUST NOT change the state 379
of the Document object (since the Document is a passive object and the Document state is a 380
subset of the JobState). For example, if the operation creates a request for unavailable resources, 381
the Job (but not the Document) transitions to a new state. 382

1.1.1.19 Set<Service>JobElements 383
The Set<Service>JobElements operation allows a Client operating for the Job Owner or an 384
Administrator, to set the values of identified Elements of the specified Job. The Client must fully 385
identify the Elements to be set as well as the set values. In the response, the Service returns 386
success or rejects the entire request with indications of which Element or Elements could not be 387
set to the specified values. 388

This operation is parallel to the Set<Service>DocumentElements and 389
Set<Service>ServiceElements operations and it follows the same rules for validation, but with 390
the target and response Elements relating to a Job rather than a Document or the Service 391

If the Client identifies a Job Element but does not specify a value for that Element,, then the 392
Service MUST remove the Element and all of its values from the Job. The semantic effect of the 393
Client supplying the Element with no value in a Set<Service>JobElements operation MUST be 394
the same as if the Element had not originally been supplied with the Job. This corresponds to the 395
action of the out-of-band value “DeleteElement” in the antecedent IPP Set-Job-Attributes 396
operation. Any subsequent Get<Service>JobElements or Get<Service>Jobs request MUST NOT 397
return any Element that has been deleted. However, a Client can re-establish such a deleted Job 398
Element with any supported value(s) using a subsequent Set<Service>JobElements operation. 399

If the Client supplies an Element in a Set<Service>JobElements request with the DeleteElement 400
value and that Element is not present on the Job object, the Service ignores that supplied Element 401
in the request, does not return the Element in the Unsupported Elements group, and returns the 402
‘success’ status code, provided that there are no other problems with the request. 403

The validation of the Set<Service>JobElements request is performed by the Service as if the Job 404
had been submitted originally with the new Element values (and the deleted Elements removed); 405
i.e., all modified Job Elements and values must be supported in combination with the Job 406
Elements not modified. If such a Job Creation operation would have been accepted, then the 407
Set<Service>JobElements request MUST be accepted. If such a Creation operation would have 408
been rejected, then the Set<Service>JobElements MUST be rejected and the Job MUST be 409

unchanged. In addition, if any of the supplied Elements are not supported, are not settable, or the 410
values are not supported, the Service MUST reject the entire operation; the Service MUST NOT 411
partially set some of the supplied Elements. In other words, after the operation, all the supplied 412
Elements MUST be set or none of them MUST be set, thus making the 413
Set<Service>JobElements an atomic operation. 414

The value of JobMandatoryElements supplied in the original Create<Service>Job request, if any, 415
MUST have no effect on the behavior of the Set<Service>JobElements operation. Rather, the 416
Service must consider that any Element or Element value in a Set<Service>JobElements 417
operation is mandatory. The Service MUST reject any request to set a Job Element to an 418
unsupported value or to a value that would conflict with another Job Element value. 419

The Service MUST accept or reject the Set<Service>JobElements operation according to the 420
rules defined for the antecedent Set-Job-Attributes operation in Internet Printing Protocol 421
(IPP):Job and Printer Set Operations [RFC3380]. 422

1.1.1.20 SuspendCurrent<Service>Job 423
The SuspendCurrent<Service>Job operation allows a Client operating for the Job Owner or an 424
Administrator, to suspend a Job by setting a condition in a Job that is currently in the Processing 425
or ProcessingStopped state. This condition, reflected by the JobSuspended value in that Job’s 426
JobStateReasons Element, causes that Job to be in the ProcessingStopped state. The Service is 427
able to processes other Jobs normally, provided that no other inhibiting conditions exist. Note 428
that a Job may be ProcessingStopped state for other reasons and that, once it has been suspended, 429
the Job will remain in the ProcessingStopped state even after the other conditions have been 430
removed. 431

There is the potential that the current Job may have changed between the time a Client requests 432
this operation and the time the Service implements it. Therefore, if the intent is to suspend a 433
particular Job, the Client can include an optional JobId parameter in the request. 434

The target Job is the Job identified by the JobId, if included in the request 435

If the JobId is not included in the request, any Jobs in the Processing or ProcessingStopped state 436
to which the requestor has access rights. 437

The Service MUST reject the request and send an appropriate message if: 438

a. There is no target Job in the Processing or ProcessingStopped state to which the requestor has 439
access rights. 440

b. The target Job or all potential target Jobs have already been suspended. 441
The Service MUST accept the request, cancel any target Job(s) that have not been previously 442
suspended, and return an appropriate message if: 443

1. The target JobId is included in the request and that Job is currently in the Processing or 444
ProcessingStopped state (but is not suspended), and the requestor has access rights, 445

2. If no JobId is included and the requestor has access rights to the Job that is currently in the 446
Processing or ProcessingStopped state (but is not suspended), the Service MUST accept the 447
request and suspend that Job. 448

3. If more than one Job is in the Processing or ProcessingStopped state (but are not suspended), all 449
such Jobs MUST be suspended unless the operation request included the optional JobId, in 450
which case only the identified target Job MUST be suspended. 451

4. If the JobId is included in the request and that Job is not currently in the Processing or 452
ProcessingStopped state; or if the JobId is not included and there is no Job currently in the 453
Processing or ProcessingStopped state, the Service MUST reject the request and return the 454
appropriate error code. 455

5. If the JobId is included in the request and that Job has been suspended; or if no JobId is included 456
and is currently in the Processing or ProcessingStopped state, the Service MUST reject the 457
request and return the appropriate error code. 458

The Resume<Service>Job operation causes a suspended Job to be released. If a Service supports 459
SuspendCurrent<Service>Job operation, it MUST support the Resume<Service>Job operation, 460
and vice-versa. 461

1.1.2 Administrative Service Specific Operations 462
Administrative Service operations directly affect the specific Services within Cloud Imaging 463
Service and/or affect the Jobs of multiple Job Owners. Access is reserved for Administrators or 464
Operators. The Administrative Service Operations are listed in Table 2 and are described below. 465
Note that these operations are accessible to only Users with proper administrative access rights to 466
the Cloud Imaging Service. These operations do not directly affect the Cloud Imaging Device 467
Manager(s) which connect to the Cloud Imaging Service, or the Devices with which these Cloud 468
Imaging Device Managers interface. 469

Table 2 Imaging Service Specific Administrative Operations 470
Operation Request Parameters (Note 2) Response Parameters

(Note 3)
Note

Cancel<Service>Jobs ElementsNaturalLanguage(optional),
JobIds(optional), Message (optional)
RequestingUserName

JobIds (optional) 1

Disable<Service>Service[ww2] ElementsNaturalLanguage(optional)
Message (optional), RequestingUserName

Enable<Service>Service ElementsNaturalLanguage(optional),
Message (optional) RequestingUserName

-

HoldNew<Service>Jobs ElementsNaturalLanguageRequested (optional),
JobHoldUntil | JobHoldUntilTime,
Message(optional), RequestingUserName

Pause<Service>Service ElementsNaturalLanguageRequested (optional),
Message(optional), RequestingUserName

Pause<Service>ServiceAfterCurrentJob ElementsNaturalLanguageRequested (optional),
Message(optional), RequestingUserName

Promote<Service>Job ElementsNaturalLanguageRequested (optional),
JobId, Message(optional),
PredecessorJobID(optional), RequestingUserName

ReleaseNew<Service>Jobs ElementsNaturalLanguageRequested (optional),
Message(optional), RequestingUserName

Restart<Service>Service ElementsNaturalLanguageRequested (optional),
IsAcceptingJobs| IsAcceptingResources (optional),
Message(optional), RequestingUserName

Resume<Service>Job ElementsNaturalLanguageRequested(optional),
JobId, Message(optional), RequestingUserName

Resume<Service>Service ElementsNaturalLanguageRequested(optional),
Message(optional), RequestingUserName

Set<Service>ServiceElements DefaultJob Ticket(optional), RequestingUserName
ElementsNaturalLanguageRequested (optional),
Capabilities(optional), CapabilitiesReady(optional),
Description(optional), Message(optional),

Unsupported
Elements(optional)

Shutdown<Service>Service ElementsNaturalLanguageRequested(optional),
Message(optional), RequestingUserName

 4

 471

Note 1: Cancel<Service>Jobs response includes identified but un-cancellable Jobs 472
Note 2: The RequestingUserName, is used by the Service to determine whether the requestor is an Administrator, Operator 473

or the Job Owner and is therefore authorized to make the request. Some implementations may require further 474
authentication of the requestor’s identity. If the requestor is not determined to have access, the Service MUST reject 475
the request. 476

Note 3: All responses must correlate to request and indicate whether request was successful or failed. 477
Note 4: Forcing Service Shutdown may also force the state of any active Jobs to Aborted. 478

 479

1.1.2.1 Cancel<Service>Jobs 480
The Cancel<Service>Jobs operation allows the Operator or Administrator of the Service to 481
cancel all identified non-Terminated Jobs or, if no specific Jobs are identified in the request, to 482
cancel all non-Terminated Jobs in the Service. It differs from the Cancel<Service>Job operation 483
in that it works on a number of Jobs at once. If, following the legal Job state Transitions in Table, 484
the Service cannot successfully cancel all explicitly or implicitly requested Jobs that are not 485
already in the terminated state it MUST NOT cancel any Jobs but MUST return an error code. In 486
this case, the Service MUST also return the list of JobIds for those Jobs that were explicitly 487
identified in the request but could not be canceled. 488

The set of candidate Jobs to be canceled is specified by the supplied JobIds. If no JobIds are 489
supplied, it is implicit that all Jobs that are not in a Terminating state are to be canceled. As with 490
all Administrative operations, the Service MUST check the access rights of the requesting user. 491
Provided that the requester has access rights, the Service MUST check the current state of each 492
of the candidate Jobs. If any of the candidate Jobs cannot be canceled, the Service MUST NOT 493
cancel any Jobs and MUST return the indicated error status code along with the list of offending 494
JobId values. If there are no Jobs that cannot be canceled, the Service MUST transition each 495
identified Job to the indicated new state as defined for the antecedent Cancel-Jobs operation in 496
paragraph 6.1 of Standard for Internet Printing Protocol (IPP):9 Job and Printer Extensions Set 2 497
[PWG5100.11]. 498

1.1.2.2 Disable<Service>Service 499
The Disable<Service>Service operation prevents the Service from creating any new Jobs by 500
negating the IsAcceptingJobs Element. This operation has no effect upon the Service State and 501
the Service is still able to process operations other than Create<Service>Job. All previously 502
created or submitted Jobs and all Jobs currently processing continue unaffected. 503

If the requestor is determined to have proper access, the Service MUST accept this request and 504
MUST negate the IsAcceptingJobs Element. 505

The IsAcceptingJobs Element value is reaffirmed by the Enable<Service>Service operation. If 506
an implementation supports Disable<Service>Service it must also support 507
Enable<Service>Service and vice-versa. 508

1.1.2.3 Enable<Service>Service 509
The Enable<Service>Service operation asserts the IsAcceptingJobs Element to allow the Service 510
to accept new Create<Service>Job requests. The operation has no effect upon the Service State 511
or any other operation requests the Service may receive. 512

If the requestor is determined to have proper access, the Service MUST accept this request and 513
MUST assert the IsAcceptingJobs Element. The Service MUST then be able to accept and 514
implement Create<Service>Job requests, provided that no other inhibiting condition exists. 515

If a Service implementation supports the Disable<Service>Service operation, then it must also 516
support Enable<Service>Service operation and vice-versa. 517

1.1.2.4 HoldNew<Service>Jobs 518
The HoldNew<Service>Jobs operation allows a client to prevent any new Jobs from being 519
eligible for scheduling by forcing all newly-created Jobs to the PendingHeld state with a 520
JobHoldUntil or JobHoldUntilTime Job Processing Element added, depending upon the Element 521
supplied with the HoldNew<Service>Jobs operation request. The operation has the same effect 522
as a Hold<Service>Jobs operation except that any Jobs in the Pending or Processing state when 523
the HoldNew<Service>Jobs request is accepted are allowed to go to completion, provided that 524
no other conditions or operations prevent this. 525

The JobHoldUntil parameter allows a client to specify holding new Jobs indefinitely or until a 526
specified named time period. The JobHoldUntilTime parameter allows a client to hold new Jobs 527
until a specified time. Provided that the requestor is authorized and the operation and requested 528
parameters are supported, a Service MUST accept a HoldNew<Service>Jobs request and MUST 529
add the supplied 'JobHoldUntil' or JobHoldUntilTime Element to the Jobs. This 530
HoldNew<Service>Job condition may be cleared by a ReleaseNew<Service>Jobs operation. 531

If the HoldNewJobs operation is supported, then the ReleaseNew<Service>Jobs operation 532
MUST be supported, and vice-versa 533

1.1.2.5 Pause<Service>Service 534
The Pause<Service>Service operation allows a client to send the Service to the Stopped state. In 535
this Service state, the Service MUST NOT advance any Job to Job Processing state. Depending 536
on implementation, the Pause<Service>Service operation MAY also stop the Service from 537
continuing to process any current Job, sending the Job to the ProcessingStopped state. That is, 538
depending upon implementation, any Job that is currently in the Processing state may be sent to 539
the ProcessingStopped state as soon as the implementation permits; or the Job may continue to a 540
termination state as determined by other conditions. The Service MUST still accept CreateJob 541
operations to create new Jobs, provided that there are no other conditions preventing it. 542

If the Pause<Service>Service operation is supported, then the Resume operation MUST also be 543
supported, and vice-versa. 544

Service State transitions resulting from a Pause<Service>Service operation are the same as 545
defined for the antecedent Pause-Printer operation in paragraph 3.2.7 of IPP/1.1: Model and 546
Semantics [RFC29110. The Pause<Service>Service action should be done as soon as the 547
possible after the request is accepted. If the implementation will take more than negligible time 548
to stop processing (perhaps to finish processing the current Job), the Service may remain in the 549
‘Processing’ state but MUST add the 'MovingToPaused' value to the Service’s StateReasons 550
Element. When the Service transitions to the 'Stopped' state, it removes the 'MovingToPaused' 551
value and adds the 'Paused' value to the Service’s StateReasons Element. If the implementation 552
permits the current Job to stop in mid processing, the Service transitions directly to the ‘Stopped’ 553
state with the Service’s StateReasons Element set to the 'Paused' value and the current Job 554
transitions to the 'ProcessingStopped' state with the JobStateReasons Element set to the 'Stopped' 555
value. 556

For any Jobs in the 'Pending' or 'PendingHeld' state, the ‘Stopped' value of the Jobs' 557
JobStateReasons Element also applies. However, the Service need not update those Jobs' 558

JobStateReasons Element and need only return the 'Stopped' value when those Jobs are queried 559
(so-called lazy evaluation). 560

Provided that the requestor is authorized, the Service MUST accept the Pause<Service>Service 561
request in any Service state and act as defined for the antecedent Pause-Printer operation in 562
paragraph 3.2.7 of IPP/1.1: Model and Semantics [RFC29110]. 563

1.1.2.6 Pause<Service>ServiceAfterCurrentJob 564
The Pause<Service>ServiceAfterCurrentJob operation allows a client to stop the Service from 565
processing any Jobs once any Jobs currently in Processing are completed. This operation has no 566
effect on the current Jobs and the Service MUST complete the processing of the current Jobs, 567
provided that no other condition or operations preclude it. The Service MUST still accept 568
CreateJob operations to create new Jobs, but MUST not cause any Jobs to enter 'Processing'. If 569
the Pause<Service>ServiceAfterCurrentJob operation is supported, then the 570
Resume<Service>Service operation MUST also be supported. 571

Service State transitions resulting from a Pause<Service>ServiceAfterCurrentJob operation are 572
as identified for the antecedent Pause-Printer-After-Current-Job operation in IPP: Job and Printer 573
Operations [RFC3998]. Note that, in implementations where the Service implementation is not 574
able to pause Jobs currently in the Processing state, the response to the 575
Pause<Service>ServiceAfterCurrentJob request and the Pause<Service>Service request are 576
exactly the same. 577

If the implementation will take more than negligible time to finish processing the current Jobs, 578
the Service will remain in the Processing state and must add the 'MovingToPaused' value to the 579
Service’s StateReasons Element. When the Service transitions to the 'Stopped' state, it removes 580
the 'MovingToPaused' value and adds the 'Paused' value to the Service’s StateReasons Element. 581

For any Jobs in the 'Pending' or 'PendingHeld' state, their state is unchanged but the 582
JobStateReasons Element must be set to the ‘Stopped' value. However, the Service need not 583
update those Jobs' JobStateReasons Element and only need return the 'Stopped' value when those 584
Jobs are queried (so-called lazy evaluation). 585

Provided that the requestor is authorized, the Service MUST accept the request in any Service 586
state and MUST transition the Service to the indicated new State as follows before returning the 587
operation response as defined for the antecedent Pause-Printer-After-Current-Job operation in 588
IPP: Job and Printer Operations [RFC3998]. 589

1.1.2.7 Promote<Service>Job 590
The Promote<Service>Job operation schedules the identified Job to be processed next, after the 591
currently processing Jobs or, if the request includes the predecessor JobId, immediately after the 592
identified predecessor Job. The Promote<Service>Job operation is a combination of the IPP 593
Promote-Job and Schedule-Job-After operations. If the predecessor Job is not specified, it acts in 594
the same way as the antecedent IPP Promote-Job operation. If the predecessor Job is specified, it 595
acts the same way as the antecedent IPP Schedule-Job-After operation. 596

The identified target Job must be in the 'Pending' state. If the identified target Job is not in the 597
'Pending' state or if the predecessor Job is identified and it is not in the ‘Pending’, ‘Processing’ or 598
‘ProcessingStopped’ state, the Service MUST reject the request and return an appropriate status 599
code. If the Promote<Service>Job request is accepted, the target Job MUST be processed 600

immediately after the current Jobs or identified predecessor Job reaches a Termination state 601
(Canceled, Completed or Aborted) 602

Note that the action of this operation is consistent even if a previous Promote<Service>Job 603
Request has caused some other Job to be scheduled after the current or predecessor Job; that is, 604
within the rescheduling time limitations of the Service, the Job identified in the last 605
Promote<Service>Job Request accepted will be processed next. 606

1.1.2.8 ReleaseNew<Service>Jobs 607
The ReleaseNew<Service>Jobs operation allows a client to remove the condition initiated by 608
HoldNew<Service>Jobs and to release all Jobs previously forced to a PendingHeld state by the 609
HoldNew<Service>Jobs initiated condition so that these Jobs are eligible for scheduling. This is 610
done by removing the 'JobHoldUntilSpecified' and ‘JobHeldByService’ values from the Job's 611
JobStateReasons Element and changing the Jobs’ states to ‘Pending’. 612

Provided that the requestor is authorized, the Service MUST accept this request in any Service 613
state and the Service MUST remove the 'JobHoldUntilSpecified' value from the Job's 614
JobStateReasons Element for any Job previously forced to a PendingHeld state by the 615
HoldNew<Service>Jobs initiated condition. 616

If the ReleaseNew<Service>Jobs operation is supported, then the HoldNew<Service>Jobs 617
operation MUST be supported, and vice-versa. 618

1.1.2.9 Restart<Service>Service 619
The Restart<Service>Service operation causes a Service in any state, even a previously shut 620
down instance of a Service, to be initialized and set to the Idle state, provided that no errors 621
occur or conditions exist that would prevent normal operation. The handling of Jobs that were in 622
the Processing, Pending, PendingHeld, and ProcessingHeld states state prior to Restart is 623
implementation dependent, but a Service Restart MUST be performed as gracefully as possible 624
and in a way preserving the content and integrity of any non-terminated Jobs. Job history data, if 625
supported, SHOULD also be preserved; a particular Service may make this mandatory. 626

Provided that the requestor is authorized, the Service MUST accept the request 627
Restart<Service>Service regardless of its current state. Providing that no conditions exist that 628
would normally prevent these actions, the Service MUST reinitialize its State to Idle, clear the 629
StateReasons Element and set the IsAcceptingJobs Element to true. 630

1.1.2.10 Resume<Service>Service 631
The Resume<Service>Service operation allows a client to cause the Service to resume 632
scheduling Jobs after scheduling has been paused. Provided that the requestor is authorized and 633
the Service supports this operation, a Service MUST accept a Resume<Service>Service request 634
regardless of the current Service state, corresponding to the actions defined for the antecedent 635
Resume-Printer operation in Internet Printing Protocol/1.1: Model and Semantics [RFC2911]. If 636
there are no other reasons why the Service is in the Stopped state, this operation returns the 637
Service from the Stopped state to the Idle or Processing state from which it was paused, and 638
removes the 'Paused' value to the Service’s StateReasons Element. 639

If the Resume<Service>Service operation is supported, then the Pause<Service>Service 640
operation MUST be supported, and vice-versa. 641

1.1.2.11 Set<Service>ServiceElements 642
The Set<Service>ServiceElements operation allows a Client to set the values of identified 643
Elements in the Service, provided that they are settable. Settable Elements may be in Service 644
Capabilities, Service Configuration, Service Description and DefaultJob Ticket but not in 645
Service Status. 646

The Service MUST reject the entire request with indications of which Element or Elements could 647
not be set if a client request attempts to: 648

1. Set a non-settable Element (including an Element not in the Service Capabilities, Service 649
Configuration, Service Description or DefaultJob Ticket groups, a read-only Element, and an 650
Element not supported or not supported as a writable Element in the specific Service 651
implementation) 652

2. Set a settable Element to an invalid value or to a value that conflicts with the values of other 653
Service Elements, including Elements being set in the same request. 654

3. Set a greater number of Elements in one operation than are supported by the Service 655
implementation (a Service implementation need not support set of more than one Element at a 656
time). 657

A Set<Service>ServiceElements operation that specifies an Element but provides no value for 658
that Element is not an error but rather a request to eliminate that Element and whatever value it 659
has. 660

If there is no reason to reject setting all of the specified Elements to the specified values or 661
elimination of the Element, the Service MUST accept this operation request when it is in the Idle 662
or Stopped state, and SHOULD accept the request when it is in the Processing state. 663

If the Service accepts the request, only those Elements specified in the request are changed 664
unless the definition of one or more of the set Elements explicitly specifies an effect upon some 665
other Element. 666

1.1.2.12 Shutdown<Service>Service 667
The Shutdown<Service>Service operation forces the Service to the ‘Down’ state from any state 668
that it is in, in an orderly manner. That is, the Service MUST stop accepting any further client 669
requests, and MUST stop scheduling Jobs for processing as soon as the implementation allows, 670
although it SHOULD complete the processing of any currently processing Jobs. Once down, the 671
Service will no longer respond to any Client requests other than Restart<Service>Service 672
request. As with the antecedent IPP Shutdown-Printer operation all Jobs MUST be preserved. As 673
with Restart<Service>Service, Service shutdown must be performed as gracefully as possible 674
and in a way in preserving the content and integrity of any non-terminated Jobs. Job history data, 675
if supported, SHOULD also be preserved. 676

Once shut down, a Service can be roused from its Down state by a Restart<Service>Service 677
operation. If a Service implementation supports Shutdown<Service>Service it must also support 678
Restart<Service>Service and vice-versa. In the down state, the only operation request that a 679
Service will respond to is a Restart<Service>Service operation. 680

Provided that the requestor is authorized, the Service MUST accept this operation and following 681
an orderly progression, transition to the Down state regardless of the current state of the Service. 682

1.1.3 Administrative Cloud Imaging Service Operations 683
These Administrative Service operations directly affect the Cloud Imaging Service and/or affect 684
the Jobs of multiple Job Owners. Access is reserved for Administrators or Operators. The 685
Administrative Service Operations are listed in Table 3 and are described below. These 686
operations are available only in Cloud Imaging Services that include a System Control Service.. 687
These operations are accessible to only Users with proper administrative access rights to the 688
Cloud Imaging Service. These operations do not directly affect the Cloud Imaging Device 689
Manager(s) which connect to the Cloud Imaging Service, or the Devices with which these Cloud 690
Imaging Device Managers interface. 691

Note that some operations parallel the <service> specific administrative operations described 692
above. It is understood that an operations of this type but without the specific imaging Services 693
specified in the operation, applies to the System Control Service. 694

Table 3 Administrative Cloud Imaging Service Operations 695
Operation Request Parameters (Note 2) Response Parameters Note

DisableAllServices 1 ElementsNaturalLanguage, Message,
RequestingUserName

EnableAllServices 1 ElementsNaturalLanguage, Message,
RequestingUserName

GetSystemElements ElementsNaturalLanguageRequested,
RequestedElements, RequestingUserName

ElementsNaturalLan
guage, System
Elements,

ListAllServices ElementsNaturalLanguageRequested, ,
RequestingUserName

ElementsNaturalLan
guage, List of
Service summary,

PauseAllServices 2 ElementsNaturalLanguage, Message,
RequestingUserName

RestartAllServices 1, 5, 6, 7 ElementsNaturalLanguage,
IsAcceptingJobs | IsAcceptingResources,
Message, RequestingUserName,
StartServicePaused

RestartService 3, 4, 5, 6, 7 ElementsNaturalLanguage, Id,
IsAcceptingJobs | IsAcceptingResources,
Message, RequestingUserName, ServiceType,
StartServicePaused

ResumeAllServices 2 ElementsNaturalLanguage, Message,
RequestingUserName

ShutdownAllServices 1 ElementsNaturalLanguage, Message,
RequestingUserName

ShutdownService1, 8 ElementsNaturalLanguage, Id, Message,
RequestingUserName ServiceType

StartupAllServices 1, 5, 6, 7 ElementsNaturalLanguage, IsAcceptingJobs,
Message, RequestingUserName,
StartSystemPaused

StartupService 1, 5, 6, 7 ElementsNaturalLanguage, IsAcceptingJobs,
Message, RequestingUserName ServiceType,
StartServicePaused

Id

DeleteService 1, 8 Id, ElementsNaturalLanguage, Message,
RequestingUserName, ServiceType

PauseAllServicesAfterCurrentJob 2 ElementsNaturalLanguage, Message,
RequestingUserName

Operation Request Parameters (Note 2) Response Parameters Note

SetSystemElements ElementsNaturalLanguage, Message,
OperationMode, RequestingUserName
SystemElements

UnsupportedElemen
ts

• 1 The operations do not apply to the SystemControlService. 696
• 2 The operation only applies to Job based Services (e.g., CopyService, FaxOutService, 697

FaxInService, PrintService, ScanService, and TransformService), 698
• 3 When the target Service is the SystemControlService the implementation MUST restart the 699

SystemControlService and MAY restart the other Services as well. 700
• 4 When the target Service is the SystemControlService the implementation of the restart may be 701

soft (i.e., affects software only) or hard (i.e., hardware and software reinitialized). 702
• 5 When the Service startup is complete the Service state is ‘Idle’ (See note 6). The Service will 703

then follow the Service state model as defined in section 7.2.1 of [PWG5108.01] 704
• 6 When the operation contains the “StartServicePaused” parameter and it is set to ‘true’, the 705

resulting Service state is ‘Stopped’ (i.e., transitions from ‘Down’ to ‘Idle’ then immediately to 706
‘Stopped’). The Service will then follow the Service state model as defined in section 7.2.1 of 707
[PWG5108.01] 708

• 7 When the operation contains the “IsAcceptingJobs” or “IsAcceptingResources” parameter and it 709
is set to ‘false’, the Service state is ‘Idle’ (See note 6). The Service will then follow the behaviors 710
as defined in section 7.3.2.2 of [PWG5108.01] or section 8.2.1 of [PWG5108.03] respectively. 711

• 8 This operations results in an error when applied to the SystemControlService. 712
 713

1.1.3.1 DeleteService 714
The DeleteService operation removes an instance of a Service. The result is that all data 715
associated with the identified Service is deleted and that Service can no longer be restarted. It is 716
an error to specify a Service that is not shutdown or to specify the SystemControlService itself. 717

1.1.3.2 DisableAllServices 718
The DisableAllServices operation is consistent with the operation Disable<Service>Service 719
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 720
SystemControlService MUST accept this request and MUST set the IsAcceptingJobs/ 721
IsAcceptingResources Element to ‘false’ for all hosted Services. This operation does not affect 722
the SystemControlService itself. This operation has no effect upon the Services’ State elements. 723

1.1.3.3 EnableAllServices 724
The EnableAllServices operation is consistent with the operation Enable<Service>Service 725
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 726
SystemControlService MUST accept this request and MUST set the IsAcceptingJobs/ 727
IsAcceptingResources Element to ‘true’ for all hosted Services. This operation has no effect 728
upon the Services’ State elements. This operation does not affect the SystemControlService 729
itself. 730

1.1.3.4 GetSystemElements 731
Unlike the Get<Service>ServiceElements [PWG5108.01] operation that allows access to only 732
the elements of the specified <Service>, the GetSystemElements operation allows a 733
SystemControl Client to obtain detailed information about the System Object as well as the 734
SystemControlService. 735

For the SystemControlService, this operation can request the elements directly below the 736
SystemControlService element (e.g., ServiceDescription, ServiceStatus). This operation MUST 737
NOT query information from any other Service. 738

For the Cloud Imaging Service, this operation can request the elements directly below the 739
System element (e.g., SystemConfiguration, SystemDescription, and SystemStatus). 740

1.1.3.5 ListAllServices 741
This operation provides summary information on all Cloud Imaging Service hosted Services 742
including the SystemControlService. The response returns a ServiceSummary for each Service 743
that includes Id, ServiceName, ServiceState, ServiceStateReasons for the Service’s endpoint and 744
other general information. 745

1.1.3.6 PauseAllServices 746
The PauseAllServices operation is consistent with the operation Pause<Service>Service 747
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 748
SystemControlService MUST accept this request and transition all the currently active job based 749
Services (e.g., CopyService, FaxOutService, FaxInService, PrintService, ScanService, 750
TransformService) to the Stopped state. During the transition each 751
<Service>ServiceStateReasons MUST contain the reason ‘MovingToPaused’. This operation 752
does not affect the SystemControlService. 753

1.1.3.7 PauseAllServicesAfterCurrentJob 754
The PauseAllServicesAfterCurrentJob operation is consistent with the operation 755
Pause<Service>ServiceAfterCurrentJob specified in [PWG5108.01]. If the requestor is 756
determined to have proper access, the SystemControlService MUST accept this request and 757
transition all the currently active job based Services (e.g., CopyService, FaxOutService, 758
FaxInService, PrintService, ScanService, TransformService) to the Stopped state in an orderly 759
manner. During the transition each <Service>ServiceStateReasons MUST contain the reason 760
‘MovingToPaused’. No pending jobs may be scheduled and all processing jobs will complete. 761
This operation does not affect the SystemControlService. 762

1.1.3.8 RestartAllServices 763
The RestartAllServices operation is consistent with the operation Restart<Service>Service 764
specified in [PWG5108.01]. This operation does not affect the SystemControlService. If the 765
requestor is determined to have proper access, the SystemControlService MUST accept this 766
request and MUST reinitialize all hosted Services, except the SystemControlService. This 767
includes setting the State to ‘Idle’, clearing the StateReasons Element and setting the 768
IsAcceptingJobs/IsAcceptingResources Element to ‘true’ if applicable. Note that parameters 769
control subsequent Service behavior (See the last paragraph in this section). When the Service 770
startup is complete the Service state is ‘Idle’ (See below). The Service will then follow the 771
Service state model as defined in section 7.2.1 of [PWG5108.01]. 772

When the operation contains the “StartServicePaused” parameter and it is set to ‘true’, the 773
resulting Service state is ‘Stopped’ (i.e., transitions from ‘Down’ to ‘Idle’ then immediately to 774
‘Stopped’). The Service will then follow the Service state model as defined in section 7.2.1 of 775
[PWG5108.01]. When the operation contains the “IsAcceptingJobs” or “IsAcceptingResources” 776

parameter and it is set to ‘false’, the Service state is ‘Idle’ (See note 6). The Service will then 777
follow the behaviors as defined in section 7.3.2.2 of [PWG5108.01] or section 8.2.1 of 778
[PWG5108.03] respectively. Parameters that do not apply to target Service are silently ignored. 779

1.1.3.9 RestartService 780
The RestartService operation is consistent with operation Restart<Service>Service specified in 781
[PWG5108.01]. If the requestor is determined to have proper access, the SystemControlService 782
MUST accept this request and MUST reinitialize the specified Service State to ‘Idle’, clear the 783
StateReasons Element and set the IsAcceptingJobs/IsAcceptingResources Element to ‘true’ if 784
applicable. Note that parameters control subsequent Service behavior (See the last paragraph in 785
this section). When the Service startup is complete the Service state is ‘Idle’ (See below). The 786
Service will then follow the Service state model as defined in section 7.2.1 of [PWG5108.01]. 787
This operation can specify any Service including the SystemControlService. 788

When the SystemControlService is the target of this operation the system behavior is 789
implementation specific. The implementation may reinitialize the existing Service or shutdown 790
and instantiate the SystemControlService. It is also implementation specific whether or not 791
restarting the SystemControlService also causes a restart of all the other hosted Services. 792

When the operation contains the “StartServicePaused” parameter and it is set to ‘true’, the 793
resulting Service state is ‘Stopped’ (i.e., transitions from ‘Down’ to ‘Idle’ then immediately to 794
‘Stopped’). The Service will then follow the Service state model as defined in section 7.2.1 of 795
[PWG5108.01]. When the operation contains the “IsAcceptingJobs” or “IsAcceptingResources” 796
parameter and it is set to ‘false’, the Service state is ‘Idle’ (See note 6). The Service will then 797
follow the behaviors as defined in section 7.3.2.2 of [PWG5108.01] or section 8.2.1 of 798
[PWG5108.03] respectively. Parameters that do not apply to target Service are silently ignored. 799

1.1.3.10 ResumeAllServices 800
The ResumeAllServices operation is consistent with the operation Resume<Service>Service 801
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 802
SystemControlService MUST accept this request and transition every job based Service (e.g., 803
CopyService, FaxOutService, FaxInService, PrintService, ScanService, and TransformService) 804
to the ‘Idle’ state. The Service will then follow the Service state model as defined in section 7.2.1 805
of [PWG5108.01]. This operation does not affect the SystemControlService. 806

1.1.3.11 ShutdownAllServices 807
The ShutdownAllServices operation is consistent with the operation Shutdown<Service>Service 808
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 809
SystemControlService MUST accept this request and forces each of the Services, except the 810
SystemControlService, to the ‘Down’ state from any state that it is in, in an orderly manner. This 811
operation does not affect the SystemControlService itself. 812

1.1.3.12 ShutdownService 813
The ShutdownService operation is consistent with the operation Shutdown<Service>Service 814
specified in [PWG5108.01]. If the requestor is determined to have proper access, the 815
SystemControlService MUST accept this request and force the specified Service to the ‘Down’ 816

state from any state that it is in, in an orderly manner. It is an error to specify the 817
SystemControlService itself. 818

1.1.3.13 StartupAllServices 819
The StartupAllServices operation initializes all the shutdown Services and takes them through 820
the ‘Down’ state to ‘Idle’, assuming that there are no inhibiting conditions See sections 7.2.1 of 821
[PWG5108.01]. If the requestor is determined to have proper access, the SystemControlService 822
MUST accept this request and initializes each of the Services, except the SystemControlService. 823
This operation does not affect the SystemControlService itself. 824

1.1.3.14 StartupService 825
The StartupService operation creates a new instance of the specified Service type and takes it 826
through the ‘Down’ state to ‘Idle’, assuming that there are no inhibiting conditions See section 827
7.2.1 of [PWG5108.01]. If the requestor is determined to have proper access, the 828
SystemControlService MUST accept this request, create a new instance and initialize the Service 829
of the specified type. It is an error to specify the SystemControlService type. 830

1.1.3.15 SetSystemElements 831
Unlike the Set<Service>ServiceElements [PWG5108.01] operation, the SetSystemElements 832
operation allows a SystemControl Client to modify information about the System Object as well 833
as the SystemControlService Elements. 834

For the SystemControlService, this operation can set the SystemControlService’s settable 835
elements (i.e., elements in ServiceDescription and none in ServiceStatus). This operation MUST 836
NOT set elements from any other Service (i.e. any other Service under the Services element at 837
the System root). 838

For the System Object, this operation can set settable elements the elements directly below the 839
System element (i.e., elements in SystemConfiguration and SystemDescription but not in 840
SystemStatus). The SystemConfiguration element in a SetSystemElements operation has 841
additional rules and an alternative syntax. 842

The alternative syntax for SystemConfiguration permits schema enforcement of setting only a 843
few elements within a SystemConfiguration element. Although an element may be mandatory in 844
the model, the SetSystemElements operation need not contain a mandatory element unless it is 845
the element being set. 846

An alternative syntax is also used when an element is a reference to another element instead of a 847
contained element (e.g., InputChannelInterface in 848
System.SystemConfiguration.InputChannels.InputChannel). For simplicity and convenience of 849
the GetServiceElements operation, when accessing an element with a referenced association to 850
another element, the entire referenced element is replicated in place. Thus there is no need to use 851
the reference identifier and make another query to obtain the information. However when the 852
SetSystemElements operation acts upon an element with a referenced association, it action is to 853
modify the reference identification and not the referenced element. Therefore when a 854
SetSystemElements operation modifies an element with a referenced association, the element 855
value will be an integer that corresponds to the identifier of the referenced element. To modify 856

the referenced element itself, the elements themselves (e.g., Interface in 857
System.SystemConfiguration.Interfaces) are modified using the SetSystemElements operation. 858

 859

1.2 Cloud Imaging Device Manager to Cloud Imaging Service 860
Operations 861

In a traditional imaging model, operations are initiated by the agent forwarding the Imaging 862
request; i.e., the Client sends requests to a Service and the Service may send requests to a 863
subordinate Service, such as one in a Device. However, in this Cloud Imaging Model, it is likely 864
that a Cloud Imaging Service is isolated from the Cloud Imaging Device Manager by a firewall 865
and cannot initiate requests. Therefore, the following operations are used by the Cloud Imaging 866
Device Manager to get Imaging Job information from and provide Device and Job status to the 867
Cloud Imaging Service. 868

 869

The following characteristics of the model must be observed in understanding these operation 870
descriptions. 871

• All Operations are in a request/response form with the request sent by the Cloud Imaging Device 872
Manager and the response sent by the Cloud Imaging Service. The protocol used must assure 873
correlation of request to response. The content of requests and responses will typically be 874
reversed compared to analogous operations in a traditional Imaging model. 875

• A Cloud Imaging Device Manager can interface with multiple Cloud Imaging Services. 876
• A Cloud Imaging Service can interface with no more than one Cloud Imaging Device Manager. 877
• The protocols used by the Cloud Imaging Device Manager in initiating requests to the Cloud 878

Imaging Service must provide for the identification and authentication of the Cloud Imaging 879
Device Manager, as well supporting security requirements appropriate to the use of the Cloud 880
Imaging facility. 881

• Some Cloud Imaging Device Managers can front-end multiple Imaging Devices. The Cloud 882
Imaging Device Manager may reports capabilities and status values for each Device individually; 883
or it can report capabilities and status values which are an intersection or union of capabilities 884
and status of the devices it represents. In the former case, specific devices may be selected by 885
the User through the Cloud Imaging Serice. In the latter case, the Cloud Imaging Service has no 886
knowledge of the individual devices and it is up to the Cloud Imaging Device Manager to 887
schedule Jobs and map Jobs to Imaging Devices 888

 889

 890

Table 3 - Cloud Imaging Device Manager to Cloud Imaging Service Operations 891
Operation Request Parameters Response Parameters Note

GetFetchable<Service>Jobs

Fetch<Service>Job

Acknowledge<Service>Job

Fetch<Service>Document

Acknowledge<Service>Document

Put<Service>JobDocumentData

Update<Service>ServiceState

Update<Service>JobState

Update<Service>DocumentState

UpdateFetchable<Service>Jobs

 892

1.2.1 GetFetchable<Service>Jobs. 893
GetFetchable<Service>Jobs is a request for the list of jobs ready to be fetched by the Cloud 894
Imaging Device Manager. The Cloud Imaging Device Manager will use the response to this 895
request to identify the requested Jobs in its subsequent FetchImagingJob request. 896

The operation can accommodate job scheduling at either the Cloud Imaging Service or the Cloud 897
Imaging Device Manager. When the Cloud Imaging Service is handling job scheduling, the 898
Cloud Imaging Server will return a list containing at most a single Job. The Job is identified by 899
its JobUuid in the Cloud Imaging Server. If the Cloud Imaging Device Manager (or the 900
Imaginger) does job scheduling, the Cloud Imaging Service response is a list of fetchable jobs 901
including a job summary element group (i.e., job summary collection in IPP) and a minimal set 902
of information useful for scheduling (e.g., Finishings, Media, ImagingColorModeType, Sides), 903
in addition to the JobUuids. 904

When the Cloud Imaging Device Manager is registered, the registration information will 905
determine whether the Cloud Imaging Device Manager or the Cloud Imaging Service is to do 906
Job scheduling. 907

1.2.2 Fetch<Service>Job. 908
Once the Cloud Imaging Device Manager has received a response to a 909
GetFetchable<Service>Jobs request indicating that there are one or more Jobs waiting, it sends a 910
Fetch<Service>Job request to the Cloud Imaging Server. This request includes the Cloud 911
Imaging Device Manager Job Uuids reported in the GetFetchable<Service>Jobs response which 912
correspond to the Jobs the Imaging Manager wishes to receive. 913

The Fetch<Service>Job response is analogous to the request portion of CreateImagingJob. This 914
response includes the operational attributes of the Job request (e.g., RequestingUserName, 915
JobPassword) as well as the Job’s ImagingJobTicket information. It does not include either the 916
document data or a reference to document data; the Cloud Imaging Device Manager must issue a 917
FetchImagingDocument message to get this data. 918

1.2.3 Acknowledge<Service>Job. 919
The Acknowledge<Service>Job operation is analogous to the CreateImagingJob response in a 920
traditional Imaging model. This operation identifies the Job by the Cloud Imaging Service Uuid 921
and correlates this to the newly created Job’s Imaginger JobUuid and Job State along with any 922
UnsupportedElements. If the Job request is rejected, this status along with appropriate reason 923
information is communicated. 924

The Cloud Imaging Service response to this message returns the state of the subject Imaging Job 925
in the Cloud Imaging Service. This response serves to confirm that the Acknowledge Imaging 926
Job message was received, as well as to inform the Cloud Imaging Device Manager of any 927
externally prompted state change (e.g., a Client Job Cancel) or to inform the Cloud Imaging 928
Device Manager of some error or inconsistency in the message (e.g., reference to a non-existent 929
or not available job.) 930

1.2.4 Fetch<Service>Document. 931
After the Cloud Imaging Device Manager/Device has created the job, it may eventually need 932
specific Document information. The Cloud Imaging Device Manager Fetch<Service>Document 933
operation retrieves the Document or Document Data reference along with operational elements 934
for Jobs using Services that require a Digital Data input; this include Print, FaxOut and EmailOut 935
Services. The operation can also be used for Services where some aspects of Device 936
functionality are handled by the Cloud Imaging Service, such as for FaxIn if the facsimile input 937
and EmailIn if fetch from the EMail server is handled by teh Cloud Imaging Service. The request 938
must include the Job and Document identification corresponding to the information received in 939
response to the GetFetchable<Service>Jobs operation. 940

The Fetch<Service>Document. response is analogous to the request portion of the 941
Send<Service>Document or Send<Service>Uri operation. This response includes the operational 942
attributes (e.g., RequestingUserName, JobPassword) as well as the Document Data content (i.e., 943
the Document Digital Data itself or a reference to it) for the requested Document. If supported, a 944
DocumentTicket can also be passed. 945

1.2.5 Acknowledge<Service>Document. 946
The Acknowledge<Service>Document operation is sent by the Cloud Imaging Device Manager 947
after the response to the Fetch<Service>Document has been received. The operation is analogous 948
to the Send<Service>Document or Send<Service>Uri response in a traditional Imaging model. 949
This operation identifies the newly created Device DocumentUuid and State along with any 950
UnsupportedElements, if applicable. 951

 952

The CloudImagingService response to this message returns the state of the subject Document in 953
the Cloud Imaging Service. This response serves to confirm that the Acknowledge Imaging 954
Document message was received, as well as to inform the Cloud Imaging Device Manager of 955
any externally prompted state change (e.g., a Client Job Cancel) or to inform the Cloud Imaging 956
Device Manager of some error or inconsistency in the message (e.g., reference to a non-existent 957
or not available document.) 958

1.2.6 Put<Service>JobDocumentData. 959
The Cloud Imaging Device Manager sends a message containing the Document Data that an 960
associated Device has obtained in executing a Job that requires the Service output Digital 961
Document Data and that the specified destination for this data is not directly accessible to the 962
Imaging Device Manager or the Imaging Device.. From the definition of Imaging Services, this 963
includes Scan and EmailIn Jobs, and may include Print and FaxIn Jobs. 964

The message includes the Cloud Imaging Service Uuid for the Job and 965

1.2.7 Update<Service>ServiceState. 966
The Cloud Imaging Device Manager sends a message reporting its current state whenever its 967
state changes, along with state message and reasons. The state of the Cloud Imaging Device 968
Manager considers both its condition and the state of the Devices(s) with which it interfaces. The 969
operation includes a sparsely populated object of the appropriate type. For example if the 970
configuration of an interfaced Imaging Device changes in a way to affect the composite Cloud 971
Print Manager state, then the UpdateDeviceState request would contain only the relevant 972
portions of the composite ImagingServiceConfiguration. If media were added, removed or 973
changed in an input tray, the InputTrays element group would be returned. The state that the 974
Cloud Imaging Service reports to the Client will usually reflect this Cloud Imaging Device 975
Manager state. 976

The Cloud Imaging Service response is primarily an acknowledgment of message receipt, but 977
optionally may include the revised state of the Cloud Imaging Service. 978

1.2.8 Update<Service>JobState. 979
The Cloud Imaging Device Manager sends a message reporting the current state of an identified 980
Imaging Job whenever that state of that Job changes, along with state message and reasons. The 981
Job state in the Cloud Imaging Device Manager considers the state of the Job in the Device to 982
which it was directed. The operation includes a sparsely populated object of the appropriate type. 983
For example, if the Imaging Device completes a Job, the Update<Service>JobState message 984
would contain the elements in Imaging DeviceJobStatus that have been changed and a final 985
version of the ImagingDeviceJobReceipt. 986

The Cloud Imaging Service response is primarily an acknowledgment of message receipt, but 987
optionally may include the revised state of the subject Job in the Cloud Imaging Service. 988

1.2.9 Update<Service>DocumentState: 989
The Cloud Imaging Device Manager may send a message reporting the current state of a 990
identified Document whenever that state of that Document changes, along with state message 991
and reasons. The Document state in the Cloud Imaging Device Manager considers the state of 992
the corresponding Job and Document in the Imaging Device to which the Job was directed. In 993
some cases, as when the Cloud Imaging Device Manager is doing acquisition of referenced 994
Document Data or preprocessing, Document state may be determined by the Cloud Imaging 995
Device Manager rather than the servicing Imaging Device. The state that the Cloud Imaging 996
Service reports to the Client will usually reflect this Cloud Imaging Device Manager reported 997
state. 998

The Cloud Imaging Service response is primarily an acknowledgment of message receipt, but 999
optionally may include the revised state of the subject Document in the Cloud Imaging Service. 1000

1.2.10 UpdateFetchable<Service>Jobs. 1001
The Cloud Imaging Service relies upon the Acknowledge<Service>Job and 1002
Update<Service>JobState messages from the Cloud Imaging Device Manager to follow the state 1003
of each Job, and uses this information to synchronize its state for that Job, which is what is 1004
communicated to the Client. If the communication from the Cloud Imaging Device Manager is 1005
disrupted, or if the Cloud Imaging Device Manager (or perhaps the Device to which the Job has 1006
been directed) is reset, this synchronism is lost. The UpdateFetchable<Service>Jobs message for 1007
each Service supported must be sent by the Cloud Imaging Device Manager when it senses that 1008
communication with the Cloud Imaging Service has been restored after a disruption, after any 1009
hard reset, and after power-up initialization. The UpdateFetchable<Service>Jobs message for a 1010
specific Service must be sent by the Cloud Imaging Device Manager when any Device handling 1011
that Service has been hard reset or otherwise may have lost track of its Jobs. This message allows 1012
the Cloud Imaging Service to resynchronize itself with respect to which of the jobs it has made 1013
available have been accepted by the Cloud Imaging Device Manager and with the states of those 1014
Jobs. 1015

The UpdateFetchable<Service>Jobs message includes a list of Jobs that the Cloud Imaging 1016
Device Manager is aware that it has fetched and has acknowledged or has intended to 1017
acknowledge, along with the current states of these jobs. The list for each Service includes all 1018
fetched Jobs up to but not including Jobs for which the Cloud Imaging Device Manager has sent 1019
and the Cloud Imaging Service has acknowledged an Update<Service>JobState message 1020
indicating that the Job is in a terminating state. Jobs are identified by their Cloud Imaging 1021
Service Uuid (i.e., the same way that they were identified in the GetFetchable<Service>Jobs 1022
response). 1023

On receiving the message, the Cloud Imaging Service moves any jobs it believes have been 1024
fetched and not completed but are not in the list provided by the Cloud Imaging Device Manager 1025
back to the fetchable job list, and readjusts the state of all Jobs listed in the 1026
UpdateFetchable<Service>Jobs message. The response to this message is a simple message 1027
received acknowledge. 1028

 1029

	1 Operations Used in Cloud Imaging Services
	1.1 Client to Cloud Imaging Server Operations
	1.1.1 Basic Client Service Operations
	1.1.1.1 Add<Service>HardcopyDocument
	1.1.1.2 Cancel<Service>Document
	1.1.1.3 Cancel<Service>Job
	1.1.1.4 CancelCurrent<Service>Job
	1.1.1.5 CancelMy<Service>Jobs
	1.1.1.6 Close<Service>Job
	1.1.1.7 Create<Service>Job
	1.1.1.8 Get<Service>DocumentElements
	1.1.1.9 Get<Service>Documents
	1.1.1.10 Get<Service>JobElements
	1.1.1.11 Get<Service>Jobs
	1.1.1.12 Get<Service>ServiceElements
	1.1.1.13 GetActive<Service>Jobs
	1.1.1.14 Resubmit<Service>Job
	1.1.1.15 Resume<Service>Job
	1.1.1.16 Send<Service>Document
	1.1.1.17 Send<Service>Uri
	1.1.1.18 Set<Service>DocumentElements
	1.1.1.19 Set<Service>JobElements
	1.1.1.20 SuspendCurrent<Service>Job

	1.1.2 Administrative Service Specific Operations
	1.1.2.1 Cancel<Service>Jobs
	1.1.2.2 Disable<Service>Service
	1.1.2.3 Enable<Service>Service
	1.1.2.4 HoldNew<Service>Jobs
	1.1.2.5 Pause<Service>Service
	1.1.2.6 Pause<Service>ServiceAfterCurrentJob
	1.1.2.7 Promote<Service>Job
	1.1.2.8 ReleaseNew<Service>Jobs
	1.1.2.9 Restart<Service>Service
	1.1.2.10 Resume<Service>Service
	1.1.2.11 Set<Service>ServiceElements
	1.1.2.12 Shutdown<Service>Service

	1.1.3 Administrative Cloud Imaging Service Operations
	1.1.3.1 DeleteService
	1.1.3.2 DisableAllServices
	1.1.3.3 EnableAllServices
	1.1.3.4 GetSystemElements
	1.1.3.5 ListAllServices
	1.1.3.6 PauseAllServices
	1.1.3.7 PauseAllServicesAfterCurrentJob
	1.1.3.8 RestartAllServices
	1.1.3.9 RestartService
	1.1.3.10 ResumeAllServices
	1.1.3.11 ShutdownAllServices
	1.1.3.12 ShutdownService
	1.1.3.13 StartupAllServices
	1.1.3.14 StartupService
	1.1.3.15 SetSystemElements

	1.2 Cloud Imaging Device Manager to Cloud Imaging Service Operations
	1.2.1 GetFetchable<Service>Jobs.
	1.2.2 Fetch<Service>Job.
	1.2.3 Acknowledge<Service>Job.
	1.2.4 Fetch<Service>Document.
	1.2.5 Acknowledge<Service>Document.
	1.2.6 Put<Service>JobDocumentData.
	1.2.7 Update<Service>ServiceState.
	1.2.8 Update<Service>JobState.
	1.2.9 Update<Service>DocumentState:
	1.2.10 UpdateFetchable<Service>Jobs.

